Jump to content

"कार्टेशियन सहनिर्देशक पद्धती" च्या विविध आवृत्यांमधील फरक

विकिपीडिया, मुक्‍त ज्ञानकोशातून
Content deleted Content added
(चर्चा | योगदान)
(चर्चा | योगदान)
No edit summary
खूणपताका: व्यक्तिगत मत ? ओळीत संदर्भ हवा.
ओळ १: ओळ १:
[[Image:Cartesian-coordinate-system.svg|thumb|right|250px|कार्टेशियन गुणक पद्धती. चार बिंदू येथे दर्शविले आहेत: (2,3) हिरव्या रंगात, (-3,1) लाल रंगात, (-1.5,-2.5) निळ्या रंगात व (0,0), उगम बिंदू (Origin), पिवळ्या रंगात.]]
[[Image:Cartesian-coordinate-system.svg|thumb|right|250px|कार्टेशियन सहनिर्देशक पद्धती. चार बिंदू येथे दर्शविले आहेत: (2,3) हिरव्या रंगात, (-3,1) लाल रंगात, (-1.5,-2.5) निळ्या रंगात व (0,0), उगम बिंदू (Origin), पिवळ्या रंगात.]]


[[Image:Cartesian-coordinate-system-with-circle.svg|thumb|right|250px|येथे कार्टेशियन गुणक पद्धतीमध्ये, उगमबिंदूवर मध्य असलेले आणि २ एवढ्या त्रिज्येचे वर्तुळ दर्शविले आहे. ह्या वर्तुळाचे समीकरण x² + y² = 4 असे आहे.]]
[[Image:Cartesian-coordinate-system-with-circle.svg|thumb|right|250px|येथे कार्टेशियन सहनिर्देशक पद्धतीमध्ये, उगमबिंदूवर मध्य असलेले आणि २ एवढ्या त्रिज्येचे वर्तुळ दर्शविले आहे. ह्या वर्तुळाचे समीकरण x² + y² = 4 असे आहे.]]


[[गणित|गणितात]] '''कार्टेशियन गुणक पद्धती''' ({{Lang-en|cartesian coordinate system}}) ही एखाद्या [[बिंदू|बिंदूचे]] [[प्रतल|प्रतलावरील]] स्थान दोन अंकांमध्ये दर्शविण्याची एक पद्धत आहे. ह्या दोन अंकांना अनुक्रमे ''X-गुणक (अथवा X-निर्देशांक)'' आणि ''Y-गुणक (अथवा Y-निर्देशांक)'' असे म्हणतात. ह्या पद्धतीत एक उभी आणि एक आडवी अशा एकमेकांना लंब असलेल्या दोन रेषा ठरविल्या जातात, त्यातील आडव्या रेषेस X-अक्ष असे म्हणतात तर उभ्या रेषेस Y-अक्ष असे म्हणतात. ह्या रेषा एकमेकाला जिथे छेदतात त्या बिंदूला उगम बिंदू (Origin) असे म्हणतात. ज्या बिंदूचे स्थान दर्शवायचे असेल, त्यापासून ह्या दोन अक्षांवर लंब टाकले जातात. त्या बिंदूच्या Y-अक्षापासूनच्या अंतरास त्या बिंदूचा X-गुणक असे म्हणतात तर X-अक्षापासूनच्या अंतरास Y-गुणक असे म्हणतात.
[[गणित|गणितात]] '''कार्टेशियन सहनिर्देशक पद्धती''' ({{Lang-en|cartesian coordinate system}}) ही एखाद्या [[बिंदू|बिंदूचे]] [[प्रतल|प्रतलावरील]] (पातळीवरील) स्थान दोन अंकांमध्ये दर्शविण्याची एक पद्धत आहे. ह्या दोन अंकांना अनुक्रमे ''X-अक्षांक'' आणि ''Y-अक्षांक'' असे म्हणतात. ह्या पद्धतीत एक उभी आणि एक आडवी अशा एकमेकांना लंब असलेल्या दोन रेषा ठरविल्या जातात, त्यातील आडव्या रेषेस X-अक्ष असे म्हणतात तर उभ्या रेषेस Y-अक्ष असे म्हणतात. ह्या रेषा एकमेकाला जिथे छेदतात त्या बिंदूला उगम बिंदू (Origin) असे म्हणतात. ज्या बिंदूचे स्थान दर्शवायचे असेल, त्यापासून ह्या दोन अक्षांवर लंब टाकले जातात. त्या बिंदूच्या Y-अक्षापासूनच्या अंतरास त्या बिंदूचा X-अक्षांक असे म्हणतात तर X-अक्षापासूनच्या अंतरास Y-अक्षांक असे म्हणतात.


हे X किंवा Y अक्ष एकमेकांना लंब नसले तरी चालतात. मात्र त्यासाठी वेगळी स्थाननिर्देशन पद्धती अवलंबावी लागते. या पद्धतीचा वापर कसा करावयाचा त्याचे या लेखात स्पष्टीकरण दिलेले नाही.
कार्टेशियन गुणक पद्धतीत वर दर्शविल्याप्रमाणे जसे द्विमितीतील अथवा एका प्रतलावरील बिंदूंचे स्थान दर्शविता येते, तसेच त्रिमिती अथवा वरच्या मितींमधील बिंदूंचे स्थानही दर्शविता येते. 'n'-मितीतील बिंदूचे स्थान दर्शविण्यास 'n' एवढे अंक लागतात.


कार्टेशियन सहनिर्देशक पद्धतीत वर दर्शविल्याप्रमाणे जसे द्विमितीतील अथवा एका प्रतलावरील(पातळीवरील) बिंदूंचे स्थान दर्शविता येते, तसेच त्रिमिती अथवा वरच्या मितींमधील बिंदूंचे स्थानही दर्शविता येते. 'n'-मितीतील बिंदूचे स्थान दर्शविण्यास 'n' एवढे अक्ष लागतात.
कार्टेशियन गुणक पद्धती वापरून [[भूमिती|भूमितीतील]] आकारांसाठी [[बीजगणित|बीजगणितातील]] समीकरणे मांडता येतात. जे बिंदू अशा समीकरणांचे समाधान करतील अशा बिंदूंच्या संचानी हा आकार दर्शविता येतो. उदा. ज्या वर्तुळाची त्रिज्या 2 आहे, त्याचे समीकरण x² + y² = 4 असे असते.

कार्टेशियन सहनिर्देशक पद्धती वापरून [[भूमिती|भूमितीतील]] आकारांसाठी [[बीजगणित|बीजगणितातील]] समीकरणे मांडता येतात. जे बिंदू अशा समीकरणांचे समाधान करतील अशा बिंदूंच्या संचानी हा आकार दर्शविता येतो. उदा. ज्या वर्तुळाची त्रिज्या 2 आहे, त्याचे समीकरण x² + y² = 4 असे असते.


== व्युत्पत्ती ==
== व्युत्पत्ती ==

११:४५, ३१ ऑगस्ट २०१३ ची आवृत्ती

कार्टेशियन सहनिर्देशक पद्धती. चार बिंदू येथे दर्शविले आहेत: (2,3) हिरव्या रंगात, (-3,1) लाल रंगात, (-1.5,-2.5) निळ्या रंगात व (0,0), उगम बिंदू (Origin), पिवळ्या रंगात.
येथे कार्टेशियन सहनिर्देशक पद्धतीमध्ये, उगमबिंदूवर मध्य असलेले आणि २ एवढ्या त्रिज्येचे वर्तुळ दर्शविले आहे. ह्या वर्तुळाचे समीकरण x² + y² = 4 असे आहे.

गणितात कार्टेशियन सहनिर्देशक पद्धती (इंग्लिश: cartesian coordinate system) ही एखाद्या बिंदूचे प्रतलावरील (पातळीवरील) स्थान दोन अंकांमध्ये दर्शविण्याची एक पद्धत आहे. ह्या दोन अंकांना अनुक्रमे X-अक्षांक आणि Y-अक्षांक असे म्हणतात. ह्या पद्धतीत एक उभी आणि एक आडवी अशा एकमेकांना लंब असलेल्या दोन रेषा ठरविल्या जातात, त्यातील आडव्या रेषेस X-अक्ष असे म्हणतात तर उभ्या रेषेस Y-अक्ष असे म्हणतात. ह्या रेषा एकमेकाला जिथे छेदतात त्या बिंदूला उगम बिंदू (Origin) असे म्हणतात. ज्या बिंदूचे स्थान दर्शवायचे असेल, त्यापासून ह्या दोन अक्षांवर लंब टाकले जातात. त्या बिंदूच्या Y-अक्षापासूनच्या अंतरास त्या बिंदूचा X-अक्षांक असे म्हणतात तर X-अक्षापासूनच्या अंतरास Y-अक्षांक असे म्हणतात.

हे X किंवा Y अक्ष एकमेकांना लंब नसले तरी चालतात. मात्र त्यासाठी वेगळी स्थाननिर्देशन पद्धती अवलंबावी लागते. या पद्धतीचा वापर कसा करावयाचा त्याचे या लेखात स्पष्टीकरण दिलेले नाही.

कार्टेशियन सहनिर्देशक पद्धतीत वर दर्शविल्याप्रमाणे जसे द्विमितीतील अथवा एका प्रतलावरील(पातळीवरील) बिंदूंचे स्थान दर्शविता येते, तसेच त्रिमिती अथवा वरच्या मितींमधील बिंदूंचे स्थानही दर्शविता येते. 'n'-मितीतील बिंदूचे स्थान दर्शविण्यास 'n' एवढे अक्ष लागतात.

कार्टेशियन सहनिर्देशक पद्धती वापरून भूमितीतील आकारांसाठी बीजगणितातील समीकरणे मांडता येतात. जे बिंदू अशा समीकरणांचे समाधान करतील अशा बिंदूंच्या संचानी हा आकार दर्शविता येतो. उदा. ज्या वर्तुळाची त्रिज्या 2 आहे, त्याचे समीकरण x² + y² = 4 असे असते.

व्युत्पत्ती

कार्टेशियन हे नाव प्रसिद्ध फ्रेंच गणितज्ञ आणि तत्वज्ञ रेने देकार्त ह्याच्या नावावरून आले आहे.