अंकगणित

विकिपीडिया, मुक्‍त ज्ञानकोशातून

अंक गणित ही गणिताची एक प्रमुख शाखा आहे. यात अंक व त्यांच्या गुणधर्मांचा अभ्यास केला जातो

ओळख[संपादन]

मुलभूत अंक गणितामधे सन्ख्याच्या गुणाकार व भागाकार विषयाक गुणधर्मांचा अभ्यास केला जातो. बीजगणितीय अंकगणित (अल्जेब्राईक नंबर थिअरी) नामाक याची एक शाखा असून तीमधे केवळ नैसर्गिक संख्या वा काम्प्लेक्स संख्यांचा (= काम्प्लेक्स नंबर्स) अभ्यास न करता अनेक अमूर्त संख्यांचाही अभ्यास केला जातो. आधुनिक अंकगणित हे बीजगणितीय भूमिती (अल्जेब्राईक जिअोमेट्री), कम्युटेटीव्ह् अल्जेब्रा व फिल्ड थिअरी या विषयांसोबत अत्यंत मुळापासून जोडलेले आहे.

जगप्रिद्ध "फर्माचा शेवटचा सिद्धांत" व "गोल्डबाखचे तर्कीत" (गोल्डबाखचे कंज्कचर) हे गणितातील प्रश्न मुळात अंकगणितातीलच आहेत. मुंबई मधील "टाटा मुलभूत संशोधन केंद्र" हे अंकगणित, बीजगणितीय भूमिती, कम्युटेटीव्ह् अल्जेब्रा व फिल्ड थिअरी या विषयांतील त्यांच्या संशोधनासाठी जगप्रसिद्ध आहे.


अंकगणित : अंकगणितात प्रामुख्याने धन पूर्णाकांच्या (म्हणजे १, २, ३, ४... या नेहमीच्या स्वाभाविक संख्यांच्या) गुणधर्मांचा अभ्यास केला जातो. धन पूर्णांकांची बेरीज, वजाबाकी, गुणाकार, भागाकार इ. गणितकृत्ये तसेच क्षेत्रफळ, घनफळ, व्याज, सरासरी, शेकडेवारी इ. व्यवहारोपयोगी प्रश्नांमध्ये उपयुक्त असणारी सूत्रे व त्यांचा वापर करण्याच्या विविध पद्धती यांचा अंक गणितात विशेष उपयोग होतो. अंकगणितात वापरली जाणारी सूत्रे तर्क कठोरपद्धतीने सिध्द करण्यावर फारसा भर दिला जात नाही तर ती गृहीत धरून त्यांचा नित्य व्यवहारातील प्रश्न सोडविण्यासाठी कसा उपयोग करता येईल याकडे विशेष लक्ष दिले जाते. संख्यांच्या व्याख्या आणि त्यांचे गुणधर्म यांचा ⇨संख्या सिद्धांत या गणितीय शाखेत विचार करण्यात येतो व या दृष्टीने अंकगणित हे संख्या सिद्धांताचे प्राथमिक स्वरूप आहे असे म्हणण्यास हरकत नाही.


संच या संकल्पनेच्या आधारे धनपूर्णांक व यांची बेरीज म्हणजे काय हे सुलभतेने मांडता येते. १, २, ३, ४,... ही अंक चिन्हे सुपरिचित आहेत. त्यांच्या संचास ध म्हणतात. आता कोणत्याही दिलेल्या संचास किती घटक आहेत हे कसे मोजतात ते पाहू. समजा का या संचात या चिन्हांनी निर्देशित असे घटक आहेत. म्हणजेच का = { } या संचातील कोणताही एक घटक घेऊन त्याच्याशी १ या अंकचिन्हाची जोडी लावली. नंतर दुसरा घटक घेऊन त्याच्याशी २ या अंकचिन्हाचा संबंध जोडला आणि राहिलेल्या घटकाशी ३ ची जोडी जमवली. अशा प्रकारे दिलेल्या का या संचाशी {१, २, ३} या ध च्या उपसंचाशी एकास-एक संबंध प्रस्थापित झाला. उपरोक्त उपसंचातील शेवटचे अंकचिन्ह ३ म्हणजेच का मधील घटकांची संख्या होय. हेच, का चा संचांक ३ आहे असेही मांडतात. याचप्रमाणे दुसऱ्या एखाद्या खा संचांक {१, २, ३..., १०, ११} या ध च्या उपसंचाचा एकास-एक संबंध जोडता येत असेल तर खा मध्ये ११ घटक आहेत किंवा खा चा संचांस ११ आहे असे म्हणता येईल. याच पद्धतीने कोणत्याही दिलेल्या संचासाठी संचांक (म्हणजे त्यात असलेल्या घटकांची संख्या) काढता येईल. यामध्ये संचातील वस्तू कोणत्या प्रकारच्या आहेत याला महत्त्व नाही हे सहजच लक्षात यावे [→ संच सिद्धांत].


आता दोन धन पूर्णांकांची बेरीज म्हणजे काय ते पाहू. समजा का आणि खा हे दोन वियुक्त संच आहेत (म्हणजेच या दोन संचांमध्ये कोणताही घटक समाईक नाही). या का आणि खा या दोन संचांचे सर्व घटक एकत्रित करून गा हा संच बनवला तर गा ला का आणि खा यांचा युतिसंच असे म्हणतात, व तो का U खा असा दर्शवतात. या युतिसंचातील घटकांच्या संख्येस (का U खा च्या संचांकांस) ग म्हटले, आणि का, खा चे संचांक अनुक्रमे क आणि ख आहेत असे मानले तर ग ही संख्या क आणि ख ची बेरीज आहे असे म्हणतात, आणि हेच ग = क + ख असे लिहितात.