"गणित" च्या विविध आवृत्यांमधील फरक
No edit summary |
No edit summary |
||
ओळ ३: | ओळ ३: | ||
नवीन सुकल्प मांडण्याच्या व त्यातील तथ्ये मूळवाक्ये आणि व्याख्यांपासून कठोर तर्काद्वारे सिद्ध करण्यासाठी गणिती अशा संकल्पनांचा धांडोळा घेतात. |
नवीन सुकल्प मांडण्याच्या व त्यातील तथ्ये मूळवाक्ये आणि व्याख्यांपासून कठोर तर्काद्वारे सिद्ध करण्यासाठी गणिती अशा संकल्पनांचा धांडोळा घेतात. |
||
अमूर्तता आणि तर्क यांच्या वापराने मोजणी, आकडेमोड, मापन यांपासून भौतिक जगतातील आकार आणि कृती यांच्या शिस्तबद्ध अभ्यासातून गणितशास्त्र विकसित पावले. गणिताचे ज्ञान व वापर हा नेहेमीच व्यक्ती आणि समाज या दोन्ही पातळींवर जीवनाचा अविभाज्य भाग होता. मूळ कल्पनांचा विकास होतांना प्राचीन भारत, प्राचीन ग्रीस, इजिप्त, मेसोपोटॅमिया, प्राचीन चीन, इत्यादी संस्कृतींमध्ये सापडलेल्या गणितावरील ग्रंथांत दिसून येतो. पाश्चात्य इतिहासलेखकांना गणिताची कठोर तर्कट चालवण्याची पद्धत लिखित स्वरूपात युक्लिडच्या इलिमेंटस् या ग्रंथात सर्वप्रथम मिळाली. सोळाव्या शतकाच्या रेनैसन्स चळवळीच्या काळापर्यंत गणिताचा विकास कमी-अधिक मगदुराने झालेला दिसतो. रेनैसन्स ही एक बौद्धिक चळवळ होती. तिच्यात गणित आणि विज्ञानातील नवीन शोधांची सुयोग्य सांगड यशस्वीरीत्या घालण्यात आली होती. |
अमूर्तता आणि तर्क यांच्या वापराने मोजणी, आकडेमोड, मापन यांपासून भौतिक जगतातील आकार आणि कृती यांच्या शिस्तबद्ध अभ्यासातून गणितशास्त्र विकसित पावले. गणिताचे ज्ञान व वापर हा नेहेमीच व्यक्ती आणि समाज या दोन्ही पातळींवर जीवनाचा अविभाज्य भाग होता. मूळ कल्पनांचा विकास होतांना प्राचीन भारत, प्राचीन ग्रीस, इजिप्त, मेसोपोटॅमिया, प्राचीन चीन, इत्यादी संस्कृतींमध्ये सापडलेल्या गणितावरील ग्रंथांत दिसून येतो. पाश्चात्य इतिहासलेखकांना गणिताची कठोर तर्कट चालवण्याची पद्धत लिखित स्वरूपात युक्लिडच्या इलिमेंटस् या ग्रंथात सर्वप्रथम मिळाली. सोळाव्या शतकाच्या रेनैसन्स चळवळीच्या काळापर्यंत गणिताचा विकास कमी-अधिक मगदुराने झालेला दिसतो. रेनैसन्स ही एक बौद्धिक चळवळ होती. तिच्यात गणित आणि विज्ञानातील नवीन शोधांची सुयोग्य सांगड यशस्वीरीत्या घालण्यात आली होती. अशा चळवळीमुळे संशोधनाचा वेग वाढण्याचा घटनाक्रम आजवरही अबाधित राहिला आहे. |
||
आज गणित हे जगभर विज्ञान, अभियांत्रिकी, |
आज गणित हे जगभर विज्ञान, अभियांत्रिकी, औषधीशास्त्र, तसेच अर्थशास्त्र आणि समाजशास्त्रासारख्या ज्ञानाच्या विविध शाखांमध्ये वापरले जाते. या शास्त्रात गणिताचा वापर करणारी गणिताचीच उपयोजित गणित ही शाखा नवीन गणिती शोधांना प्रेरणा देते आणि त्यांचा वापर करते. यामुळे ज्ञानाच्या सर्वस्वी नवीन शाखाही उदयास येतांत. कलेसाठी कला या न्यायाने केवळ गणितासाठी गणित अशा ध्येयाने शुद्धगणिताचा अभ्यास करणारे गणितीही आहेत. सहसा, अशा शुद्धगणितातील शोधांचा कालांतराने उपयोजित गणितात वापर कसा करावा त्या पद्धतींचा शोध लागतोच. |
||
== व्युत्पत्ती == |
== व्युत्पत्ती == |
||
गणिताशी |
गणिताशी संबंधित इंग्रजी शब्दाची व्युत्पत्ती ग्रीक भाषेतून आलेली आहे. मराठीतील गणित या शब्दाची व्युत्पत्ती "गण्" या संस्कृत धातूपासून झाली आहे. |
||
== इतिहास == |
== इतिहास == |
||
गणिताचा विकास अमूर्त संकल्पनांच्या चढत्या भाजणीतून किंवा विषयाच्या विस्तारातून झाला असे मानता येईल. संख्या अमूर्ततेची पहिली पायरी |
गणिताचा सध्याचा विकास अमूर्त संकल्पनांच्या चढत्या भाजणीतून किंवा विषयाच्या विस्तारातून झाला असे मानता येईल. संख्या ही अमूर्ततेची पहिली पायरी होय. दोन संत्री आणि दोन सफरचंदांमध्ये (दोनत्वाचे)काहीतरी साम्य आहे ही मानवी प्रज्ञेची महत्त्वाची उडी होती. भौतिक वस्तूंची मोजदाद करण्याशिवाय प्राचीन लोकांना काळासारख्या अमूर्त कल्पना (जसे दिवस, महिने वर्ष) कसे मोजावे याचेही ज्ञान होते. अर्थातच बेरीज, वजाबाकी, गुणाकार, भागाकार यांसारख्या मूलभूत अंकगणिती क्रिया येणे क्रमप्राप्तच होते. प्राचीन काळातील भव्य वास्तू पूर्वजांच्या भूमितीच्या ज्ञानाची साक्ष देतात. |
||
गणिताच्या अधिक प्रगतीसाठी लेखनाची किंवा संख्यांची नोंद करण्याची पद्धतीची गरज पडली. पडताळ्याच्या रेघा किंवा इंका साम्राज्यातील क्विपू नावाच्या गाठ मारलेल्या दोर्या वापरून संख्यात्मक माहितीची नोंदी ठेवल्या जात होत्या. जगभर विविध संख्यापद्धती प्रचलित होत्या. |
|||
लिखित इतिहासाच्या प्रारंभापासूनच कर आणि वाणिज्याशी संबंधित व्यवहारांची आकडेमोड करण्यासाठी, संख्यांचा परस्परसंबंध समजण्यासाठी, जमिनीची मोजणी करण्यासाठी आणि खगोलीय घटनांचा |
लिखित इतिहासाच्या प्रारंभापासूनच कर आणि वाणिज्याशी संबंधित व्यवहारांची आकडेमोड करण्यासाठी, संख्यांचा परस्परसंबंध समजण्यासाठी, जमिनीची मोजणी करण्यासाठी आणि खगोलीय घटनांचा वेध घेण्यासाठी गणिताची निकड भासली. यावरूनच मोजणी, संरचना, अवकाश आणि बदल यांच्या अभ्यासांचा गणिताच्या शाखांशी स्थूलरूपाने संबंध जोडता येतो. |
||
विज्ञान आणि गणित यांचा एकमेकांशी परस्परपोषक असा संबंध असल्याने असून हल्लीचे गणित अतिशय विकसित आहे. ऐतिहासिक काळापासूनच गणितात विविध शोध लागले आणि हे चक्र सुरूच आहे. |
|||
अमेरिकन गणिती संघटनेच्या जानेवारी २००६ च्या वार्तापत्रातील मिखाईल बी. सेव्हरिक यांच्या लेखानुसार संघटनेच्या मॅथॅमॅटिकल रिव्ह्यू या विदागारात, त्याच्या प्रथम वर्षापासून म्हणजेच इसवी सन |
अमेरिकन गणिती संघटनेच्या जानेवारी २००६ च्या वार्तापत्रातील मिखाईल बी. सेव्हरिक यांच्या लेखानुसार संघटनेच्या मॅथॅमॅटिकल रिव्ह्यू या विदागारात, त्याच्या प्रथम वर्षापासून म्हणजेच इसवी सन १९४० पासून १९ लाख पुस्तके आणि सुबंध होते. दरवर्षी त्यांत ७५ हजार नवीन रचना जोडल्या जातात. यातील बहुतांश कृती या नवीन प्रमेये आणि त्यांच्या सिद्धान्तांशी संबंधित आहेत. |
||
== प्रेरणा, शुद्ध व उपयोजित गणित, आणि सौंदर्यशास्त्र == |
== प्रेरणा, शुद्ध व उपयोजित गणित, आणि सौंदर्यशास्त्र == |
||
जेव्हा मोजणी, संरचना, अवकाश आणि बदल यांच्याशी संबंधित क्लिष्ट समस्या उभ्या ठाकतात तेव्हा गणित प्रगटते. |
जेव्हा मोजणी, संरचना, अवकाश आणि बदल यांच्याशी संबंधित क्लिष्ट समस्या उभ्या ठाकतात तेव्हा गणित प्रगटते. प्राचीन काळी जमिनीची मोजणी, कर, खगोलशास्त्र इत्यादींमध्ये या समस्यांची सुरुवात झाली. आज विज्ञानातील सर्व शाखांत निर्माण होणा-या समस्या गणिताच्या वापराने सुटू शकतात. तसेच, खुद्द गणितातही अनेक मनोरंजक समस्या प्रगटतात. अनंताश्रयी कलनाचा शोध लावणा-यांपैकी न्यूटन हा एक मानला जातो. फेनमन पथ कलनाचा शोध फेनमनने भौतिकशास्त्रातील अंतर्दृष्टी आणि तर्काच्या साहाय्याने लावला. सांप्रत काळी भौतिकशास्त्रात, ब्रह्मांडशास्त्राशी संबंधित तंतुसिद्धान्तामुळे गणितात नवनिर्मिती होत आहे. गणिताचा काही भाग हा एखाद्या विशिष्ट शाखेशीच निगडित असतो आणि तेथेच त्याचा वापर होतो. परंतु, बहुतेक वेळा ज्ञानाच्या एखाद्या शाखेतील प्रेरणेने विकसित झालेले गणित इतर शाखांमध्येही उपयोगी पडते आणि गणितातील विविधोपयोगी भव्य कोठाराचा भाग बनते. अगदी शुद्धतम गणिताचा सुद्धा उपयोजित शाखांमध्ये कुठे ना कुठे उपयोग होतोच. या अद्भुत सत्याला स्तिमित होऊन यूजिन विगनर या भौतिकीतील शास्त्रज्ञाने गणिताची अतर्क्य कार्यक्षमता ([http://en.wikipedia.org/wiki/The Unreasonable Effectiveness of Mathematics in the Natural Sciences इंग्रजी दुवा]) असे संबोधले आहे. |
||
ज्ञानाच्या इतर शाखांप्रमाणेच गणिताच्या |
ज्ञानाच्या इतर शाखांप्रमाणेच गणिताच्या देदीप्यमान विकासामुळे त्यांतही वैशेषीकरण झाले आहे. मुळात शुद्ध गणित आणि उपयोजित गणित या दोन प्रमुख शाखा होत्या. आता मात्र, गणिताच्या नाना उपयोजित शाखांचा गणिताबाहेरील परंपरांशी संगम होऊन सांख्यिकी, क्रियन संशोधन आणि संगणन विज्ञानासारख्या अनेक नवीन विषयांची निर्मिती झाली आहे. |
||
अनेक गणिती, गणिताच्या नेटकेपणाबद्दल म्हणजेच त्याच्या कलात्मक आणि उस्फूर्त सौंदर्याबद्दल बोलतात. |
अनेक गणिती, गणिताच्या नेटकेपणाबद्दल म्हणजेच त्याच्या कलात्मक आणि उस्फूर्त सौंदर्याबद्दल बोलतात. गणिताच्या साधेपणाला आणि व्यापकत्वाला विशेष महत्त्व दिले जाते. चतुरपणे मांडलेली सिद्धता (उदाहरणार्थ, जसे मूळ संख्या अनंत असल्याची युक्लिडची सिद्धता) किंवा आकडेमोड सोपी करण्याच्या पद्धती (जसे चपळ फोरियर रूपांतर) यांतही सौंदर्य आहे. जी. एच. हार्डीने "एका गणितीचे वक्तव्य" या आपल्या पुस्तकात म्हटले आहे की सौंदर्याचे हे निकषच शुद्धगणिताचा अभ्यास करण्यासाठी पुरेसे आहेत. नेटक्या प्रमेयांच्या सिद्धता शोधण्यासाठी गणिती विशेष प्रयत्न करतात. पॉल इरडॉजने या प्रकारास "देवांच्या गणितविषयावरील आवडत्या पुस्तकातील प्रमेयांचा शोध" असे म्हटले आहे. ब-याच लोकांना गणिती समस्या उकलण्यास आवडते. अशानेच गणिताचे रंजकत्व आणि लोकप्रियता समजते. |
||
== नोटेशन, भाषा आणि तर्काधिष्ठता == |
== नोटेशन, भाषा आणि तर्काधिष्ठता == |
||
गणितात हल्ली वापरल्या जाणा-या नोटशनपैकी |
गणितात हल्ली वापरल्या जाणा-या नोटशनपैकी काहीच सोळाव्या शतकापर्यंत शोधले गेले होते. त्या आधी गणित हे शब्दांत व्यक्त केल्या जात असे, ज्याच्या बोजडपणामुळे गणिताचा फारसा विकास होऊ शकलेला नव्हता. आधुनिक नोटेशनमुळे तज्ज्ञांसाठी गणित सोयीचे, परंतु, नवशिक्यासाठी अधिक क्लिष्ट झाले आहे. आधुनिक नोटेशन अतिशय संक्षिप्त आहे. मोजक्याच मुळाक्षरांमध्ये प्रचंड माहिती देता येते. पाश्चात्य संगीताच्या नोटेशनप्रमाणेच गणिताच्या नोटेशनचे कडक नियम असून ते नोटेशन ज्या प्रकारची माहिती लिखित रूपात सांगते, ती इतर कोणत्याही पद्धतीने व्यक्त करणे जवळजवळ अशक्यच आहे. |
||
नवशिक्यांसाठी गणिताची भाषासुद्धा अंमळ क्लिष्टच आहे. अगदी साधेसुधे शब्दांनाही (किंवा, केवळ) गणितात दैनंदिन व्यवहारापेक्षा अधिक नेमका अर्थ असतो. तसेच कित्येक शब्द, जसे उघड आणि क्षेत्र,यांना गणितात विशेष अर्थ असतो. तसेच गणितात सारणिक आणि कलनीय अशा तांत्रिक संज्ञाही आहेत. या विशेष नोटेशन आणि तांत्रिक संज्ञांमागे एक मोठेच कारण आहे. ते म्हणजे, गणिताला |
नवशिक्यांसाठी गणिताची भाषासुद्धा अंमळ क्लिष्टच आहे. अगदी साधेसुधे शब्दांनाही (किंवा, केवळ) गणितात दैनंदिन व्यवहारापेक्षा अधिक नेमका अर्थ असतो. तसेच कित्येक शब्द, जसे उघड आणि क्षेत्र, यांना गणितात विशेष अर्थ असतो. तसेच गणितात सारणिक आणि कलनीय अशा तांत्रिक संज्ञाही आहेत. या विशेष नोटेशन आणि तांत्रिक संज्ञांमागे एक मोठेच कारण आहे. ते म्हणजे, गणिताला दैनंदिन व्यवहारातील बोलीपेक्षा अधिक नेमकेपणा लागतो. भाषेच्या आणि तर्काच्या या नेमकेपणांस गणिती "काटेकोरपणा" म्हणतात. |
||
मूलतः |
मूलतः काटेकोरपणा हे गणितातील सिद्धतांसाठी आवश्यक आहे. शिस्तबद्ध कार्यकारणभाव लावून मूळ वाक्यांपासून प्रमेये सिद्ध करण्याची गणितींची इच्छा असते. अंतःप्रेरणा आयत्या वेळेस दगा देऊ शकते. त्यामुळे चुकीचे सिद्धान्तही मांडले जाऊ शकतात. गणिताच्या इतिहासात असे अनेक वेळा झालेही आहे. हे टाळण्यासाठी काटेकोरपणा आवश्यक ठरतो. काटेकोरपणा काळानुसार कमी-अधिक झालेला आहे. |
||
ग्रीकांच्या काळी सिद्धतांचे मुद्दे विस्तृत रितीने मांडण्यावर भर होता. न्यूटनच्या काळी काटकोरपणा त्या मानाने कमी होता. न्यूटनने वापरलेल्या व्याख्यांमधील कच्च्या दुव्यांमुळे १९ व्या शतकात |
ग्रीकांच्या काळी सिद्धतांचे मुद्दे विस्तृत रितीने मांडण्यावर भर होता. न्यूटनच्या काळी काटकोरपणा त्या मानाने कमी होता. न्यूटनने वापरलेल्या व्याख्यांमधील कच्च्या दुव्यांमुळे १९ व्या शतकात काळजीपूर्वक विश्लेषण आणि औपचारिक सिद्धतांचा पुन्हा उदय झाला. संगणकाच्या मदतीने लिहिलेल्या सिद्धता वापरल्या जाव्यात अथवा नाही यावर आजच्या गणितींमध्ये मतभेद आहेत. अतिभव्य आकडेमोडींचा पडताळा करणे अत्यंत अवघड असल्याने अशा प्रकारच्या सिद्धतांमध्ये अपेक्षित काटेकोरपणाचा अभाव असू शकतो. परंपरेच्या दृष्टीने मूलवाक्ये ही स्वयंप्रकाशित तथ्ये होती. परंतु, त्यांत ब-याच व्यावहारिक अडचणी आहेत. औपचारिक दृष्टीने पाहता, मूलवाक्य म्हणजे चिन्हांनी बनलेले केवळ एक नाम असते, ज्याचा मूळ अर्थ त्या-त्या मूळवाक्यांच्या विधिविधानातील सूत्रांच्या संदर्भातच असतो. |
||
सगळ्याच गणितास |
सगळ्याच गणितास मूलवाक्याच्या आधाराने सिद्ध करणे हे हिलबर्टच्या आज्ञावलीचे उद्दिष्ट होते. परंतु गोडेलच्या अपूर्णतेच्या सिद्धान्तानुसार कुठल्याही यथोचित मूळ वाक्यांच्या विधिविधानात सिद्ध न करता येण्याजोगी सूत्रे असतातच. त्यामुळे गणिताचे संपूर्ण मूलवाक्यायन अशक्य आहे. इतके असले तरी गणित हे कुठल्यातरी संच सिद्धांतातील (संचप्रवादातील) मूळवाक्यायन आहे असे समजले जाते. या दृष्टीने पहाता प्रत्येक गणिती वाक्य किंवा सिद्धान्त हा संचसिद्धान्तातील सूत्रांच्या रूपात मांडला जाऊ शकतो. |
||
== |
== गणितातला "पाय"(π) == |
||
''याबद्दलचा विस्तृत लेख [['पाय' (π) अव्यय राशी|येथे]] आहे.'' |
''याबद्दलचा विस्तृत लेख [['पाय' (π) अव्यय राशी|येथे]] आहे.'' |
||
ओळ ५३: | ओळ ५३: | ||
" क्ष<sup>न</sup><sub>+</sub> य<sup>न</sup><sub>= </sub>ज्ञ<sup>न</sup> " |
" क्ष<sup>न</sup><sub>+</sub> य<sup>न</sup><sub>= </sub>ज्ञ<sup>न</sup> " |
||
ह्या 'साध्यासरळ' समीकरणात 'न' ह्या घाताची किंमत २ हून अधिक असा कुठलाही पूर्णांक |
ह्या 'साध्यासरळ' समीकरणात 'न' ह्या घाताची किंमत २ हून अधिक असा कुठलाही पूर्णांक असेल तर |
||
⚫ | |||
⚫ | |||
मांडून "त्या [[प्रमेय|प्रमेयाची]] एक खास [[सिद्धता]] मी शोधून काढली आहे, पण ह्या पानावरची (छापील मजकुराभोवतीची) समासाची |
|||
जागा ती सिद्धता लिहायला अपुरी आहे" असेही फर्मॅटनी एका गणिताच्या पुस्तकात लिहून ठेवले होते! |
जागा ती सिद्धता लिहायला अपुरी आहे" असेही फर्मॅटनी एका गणिताच्या पुस्तकात लिहून ठेवले होते! |
||
फर्मॅट ह्यांच्या निधनानंतर हे प्रमेय "फर्मॅटचे शेवटचे प्रमेय" ह्या नावाने गणितशास्त्रात प्रसिद्धीला आले. सुमारे ३३० वर्षे ते प्रमेय सिद्ध करण्याचे किंवा ते चूक असल्याचे सिद्ध करायचे जंगी प्रयत्न अनेक |
फर्मॅट ह्यांच्या निधनानंतर हे प्रमेय "फर्मॅटचे शेवटचे प्रमेय" ह्या नावाने गणितशास्त्रात प्रसिद्धीला आले. सुमारे ३३० वर्षे ते प्रमेय सिद्ध करण्याचे किंवा ते चूक असल्याचे सिद्ध करायचे जंगी प्रयत्न अनेक बुद्धिमान गणितज्ञांनी केले, पण त्या प्रदीर्घ काळात कोणालाही त्यात यश मिळाले नव्हते! सरतेशेवटी [[आंड्र्यू वाइल्स]] ह्या ब्रिटिश गणितज्ञाने अनेक वर्षांच्या भगीरथ प्रयत्नाने १९९४ साली ते प्रमेय अचूकपणे सिद्ध केले! |
||
बुद्धिमान गणितज्ञांनी केले, पण त्या प्रदीर्घ काळात कोणालाही त्यात यश मिळाले नव्हते! सरतेशेवटी [[आंड्र्यू वाइल्स]] ह्या ब्रिटिश गणितज्ञाने अनेक वर्षांच्या भगीरथ प्रयत्नाने १९९४ साली ते प्रमेय |
|||
अचूकपणे सिद्ध केले! |
|||
काही काही लोकोत्तर बुद्धिमंतांच्या वेगवेगळ्या ज्ञानशाखांमधल्या अशा प्रचंड भरार्या पाहण्यात परमेश्वरदर्शन घडते. |
काही काही लोकोत्तर बुद्धिमंतांच्या वेगवेगळ्या ज्ञानशाखांमधल्या अशा प्रचंड भरार्या पाहण्यात परमेश्वरदर्शन घडते. |
||
[[पिएर फर्मॅट]], [[रेने देकार्त]], आणि [[ब्लेस पास्कॅल]] हे तीन श्रेष्ठ फ्रेंच |
[[पिएर फर्मॅट]], [[रेने देकार्त]], आणि [[ब्लेस पास्कॅल]] हे तीन श्रेष्ठ फ्रेंच गणिती समकालीन होते. |
||
== प्रसिद्ध |
== प्रसिद्ध गणिती == |
||
* [[पिएर फर्मा]] |
* [[पिएर फर्मा]] |
२३:४७, २२ जानेवारी २०११ ची आवृत्ती
मोजणी, संरचना, अवकाश आणि बदल या संकल्पनांवर आधारित असलेली आणि त्यांचा अभ्यास करणारी गणित ही ज्ञानाची एक शाखा आहे. गणितास हे योग्य निष्कर्ष काढण्याचे शास्त्र आहे असे विद्वान मानतात. गणित हे प्रतिमानांचे (पॅटर्न) शास्त्र असून संख्या, अवकाश, विज्ञान, संगणक, अमूर्त कल्पना आणि अशाच काही तत्सम विषयांमध्ये गणिताच्या साह्याने प्रतिमाने शोधता येतात असे या शास्त्राचा वापर करणारे म्हणतात.
नवीन सुकल्प मांडण्याच्या व त्यातील तथ्ये मूळवाक्ये आणि व्याख्यांपासून कठोर तर्काद्वारे सिद्ध करण्यासाठी गणिती अशा संकल्पनांचा धांडोळा घेतात.
अमूर्तता आणि तर्क यांच्या वापराने मोजणी, आकडेमोड, मापन यांपासून भौतिक जगतातील आकार आणि कृती यांच्या शिस्तबद्ध अभ्यासातून गणितशास्त्र विकसित पावले. गणिताचे ज्ञान व वापर हा नेहेमीच व्यक्ती आणि समाज या दोन्ही पातळींवर जीवनाचा अविभाज्य भाग होता. मूळ कल्पनांचा विकास होतांना प्राचीन भारत, प्राचीन ग्रीस, इजिप्त, मेसोपोटॅमिया, प्राचीन चीन, इत्यादी संस्कृतींमध्ये सापडलेल्या गणितावरील ग्रंथांत दिसून येतो. पाश्चात्य इतिहासलेखकांना गणिताची कठोर तर्कट चालवण्याची पद्धत लिखित स्वरूपात युक्लिडच्या इलिमेंटस् या ग्रंथात सर्वप्रथम मिळाली. सोळाव्या शतकाच्या रेनैसन्स चळवळीच्या काळापर्यंत गणिताचा विकास कमी-अधिक मगदुराने झालेला दिसतो. रेनैसन्स ही एक बौद्धिक चळवळ होती. तिच्यात गणित आणि विज्ञानातील नवीन शोधांची सुयोग्य सांगड यशस्वीरीत्या घालण्यात आली होती. अशा चळवळीमुळे संशोधनाचा वेग वाढण्याचा घटनाक्रम आजवरही अबाधित राहिला आहे.
आज गणित हे जगभर विज्ञान, अभियांत्रिकी, औषधीशास्त्र, तसेच अर्थशास्त्र आणि समाजशास्त्रासारख्या ज्ञानाच्या विविध शाखांमध्ये वापरले जाते. या शास्त्रात गणिताचा वापर करणारी गणिताचीच उपयोजित गणित ही शाखा नवीन गणिती शोधांना प्रेरणा देते आणि त्यांचा वापर करते. यामुळे ज्ञानाच्या सर्वस्वी नवीन शाखाही उदयास येतांत. कलेसाठी कला या न्यायाने केवळ गणितासाठी गणित अशा ध्येयाने शुद्धगणिताचा अभ्यास करणारे गणितीही आहेत. सहसा, अशा शुद्धगणितातील शोधांचा कालांतराने उपयोजित गणितात वापर कसा करावा त्या पद्धतींचा शोध लागतोच.
व्युत्पत्ती
गणिताशी संबंधित इंग्रजी शब्दाची व्युत्पत्ती ग्रीक भाषेतून आलेली आहे. मराठीतील गणित या शब्दाची व्युत्पत्ती "गण्" या संस्कृत धातूपासून झाली आहे.
इतिहास
गणिताचा सध्याचा विकास अमूर्त संकल्पनांच्या चढत्या भाजणीतून किंवा विषयाच्या विस्तारातून झाला असे मानता येईल. संख्या ही अमूर्ततेची पहिली पायरी होय. दोन संत्री आणि दोन सफरचंदांमध्ये (दोनत्वाचे)काहीतरी साम्य आहे ही मानवी प्रज्ञेची महत्त्वाची उडी होती. भौतिक वस्तूंची मोजदाद करण्याशिवाय प्राचीन लोकांना काळासारख्या अमूर्त कल्पना (जसे दिवस, महिने वर्ष) कसे मोजावे याचेही ज्ञान होते. अर्थातच बेरीज, वजाबाकी, गुणाकार, भागाकार यांसारख्या मूलभूत अंकगणिती क्रिया येणे क्रमप्राप्तच होते. प्राचीन काळातील भव्य वास्तू पूर्वजांच्या भूमितीच्या ज्ञानाची साक्ष देतात.
गणिताच्या अधिक प्रगतीसाठी लेखनाची किंवा संख्यांची नोंद करण्याची पद्धतीची गरज पडली. पडताळ्याच्या रेघा किंवा इंका साम्राज्यातील क्विपू नावाच्या गाठ मारलेल्या दोर्या वापरून संख्यात्मक माहितीची नोंदी ठेवल्या जात होत्या. जगभर विविध संख्यापद्धती प्रचलित होत्या.
लिखित इतिहासाच्या प्रारंभापासूनच कर आणि वाणिज्याशी संबंधित व्यवहारांची आकडेमोड करण्यासाठी, संख्यांचा परस्परसंबंध समजण्यासाठी, जमिनीची मोजणी करण्यासाठी आणि खगोलीय घटनांचा वेध घेण्यासाठी गणिताची निकड भासली. यावरूनच मोजणी, संरचना, अवकाश आणि बदल यांच्या अभ्यासांचा गणिताच्या शाखांशी स्थूलरूपाने संबंध जोडता येतो.
विज्ञान आणि गणित यांचा एकमेकांशी परस्परपोषक असा संबंध असल्याने असून हल्लीचे गणित अतिशय विकसित आहे. ऐतिहासिक काळापासूनच गणितात विविध शोध लागले आणि हे चक्र सुरूच आहे.
अमेरिकन गणिती संघटनेच्या जानेवारी २००६ च्या वार्तापत्रातील मिखाईल बी. सेव्हरिक यांच्या लेखानुसार संघटनेच्या मॅथॅमॅटिकल रिव्ह्यू या विदागारात, त्याच्या प्रथम वर्षापासून म्हणजेच इसवी सन १९४० पासून १९ लाख पुस्तके आणि सुबंध होते. दरवर्षी त्यांत ७५ हजार नवीन रचना जोडल्या जातात. यातील बहुतांश कृती या नवीन प्रमेये आणि त्यांच्या सिद्धान्तांशी संबंधित आहेत.
प्रेरणा, शुद्ध व उपयोजित गणित, आणि सौंदर्यशास्त्र
जेव्हा मोजणी, संरचना, अवकाश आणि बदल यांच्याशी संबंधित क्लिष्ट समस्या उभ्या ठाकतात तेव्हा गणित प्रगटते. प्राचीन काळी जमिनीची मोजणी, कर, खगोलशास्त्र इत्यादींमध्ये या समस्यांची सुरुवात झाली. आज विज्ञानातील सर्व शाखांत निर्माण होणा-या समस्या गणिताच्या वापराने सुटू शकतात. तसेच, खुद्द गणितातही अनेक मनोरंजक समस्या प्रगटतात. अनंताश्रयी कलनाचा शोध लावणा-यांपैकी न्यूटन हा एक मानला जातो. फेनमन पथ कलनाचा शोध फेनमनने भौतिकशास्त्रातील अंतर्दृष्टी आणि तर्काच्या साहाय्याने लावला. सांप्रत काळी भौतिकशास्त्रात, ब्रह्मांडशास्त्राशी संबंधित तंतुसिद्धान्तामुळे गणितात नवनिर्मिती होत आहे. गणिताचा काही भाग हा एखाद्या विशिष्ट शाखेशीच निगडित असतो आणि तेथेच त्याचा वापर होतो. परंतु, बहुतेक वेळा ज्ञानाच्या एखाद्या शाखेतील प्रेरणेने विकसित झालेले गणित इतर शाखांमध्येही उपयोगी पडते आणि गणितातील विविधोपयोगी भव्य कोठाराचा भाग बनते. अगदी शुद्धतम गणिताचा सुद्धा उपयोजित शाखांमध्ये कुठे ना कुठे उपयोग होतोच. या अद्भुत सत्याला स्तिमित होऊन यूजिन विगनर या भौतिकीतील शास्त्रज्ञाने गणिताची अतर्क्य कार्यक्षमता (Unreasonable Effectiveness of Mathematics in the Natural Sciences इंग्रजी दुवा) असे संबोधले आहे.
ज्ञानाच्या इतर शाखांप्रमाणेच गणिताच्या देदीप्यमान विकासामुळे त्यांतही वैशेषीकरण झाले आहे. मुळात शुद्ध गणित आणि उपयोजित गणित या दोन प्रमुख शाखा होत्या. आता मात्र, गणिताच्या नाना उपयोजित शाखांचा गणिताबाहेरील परंपरांशी संगम होऊन सांख्यिकी, क्रियन संशोधन आणि संगणन विज्ञानासारख्या अनेक नवीन विषयांची निर्मिती झाली आहे.
अनेक गणिती, गणिताच्या नेटकेपणाबद्दल म्हणजेच त्याच्या कलात्मक आणि उस्फूर्त सौंदर्याबद्दल बोलतात. गणिताच्या साधेपणाला आणि व्यापकत्वाला विशेष महत्त्व दिले जाते. चतुरपणे मांडलेली सिद्धता (उदाहरणार्थ, जसे मूळ संख्या अनंत असल्याची युक्लिडची सिद्धता) किंवा आकडेमोड सोपी करण्याच्या पद्धती (जसे चपळ फोरियर रूपांतर) यांतही सौंदर्य आहे. जी. एच. हार्डीने "एका गणितीचे वक्तव्य" या आपल्या पुस्तकात म्हटले आहे की सौंदर्याचे हे निकषच शुद्धगणिताचा अभ्यास करण्यासाठी पुरेसे आहेत. नेटक्या प्रमेयांच्या सिद्धता शोधण्यासाठी गणिती विशेष प्रयत्न करतात. पॉल इरडॉजने या प्रकारास "देवांच्या गणितविषयावरील आवडत्या पुस्तकातील प्रमेयांचा शोध" असे म्हटले आहे. ब-याच लोकांना गणिती समस्या उकलण्यास आवडते. अशानेच गणिताचे रंजकत्व आणि लोकप्रियता समजते.
नोटेशन, भाषा आणि तर्काधिष्ठता
गणितात हल्ली वापरल्या जाणा-या नोटशनपैकी काहीच सोळाव्या शतकापर्यंत शोधले गेले होते. त्या आधी गणित हे शब्दांत व्यक्त केल्या जात असे, ज्याच्या बोजडपणामुळे गणिताचा फारसा विकास होऊ शकलेला नव्हता. आधुनिक नोटेशनमुळे तज्ज्ञांसाठी गणित सोयीचे, परंतु, नवशिक्यासाठी अधिक क्लिष्ट झाले आहे. आधुनिक नोटेशन अतिशय संक्षिप्त आहे. मोजक्याच मुळाक्षरांमध्ये प्रचंड माहिती देता येते. पाश्चात्य संगीताच्या नोटेशनप्रमाणेच गणिताच्या नोटेशनचे कडक नियम असून ते नोटेशन ज्या प्रकारची माहिती लिखित रूपात सांगते, ती इतर कोणत्याही पद्धतीने व्यक्त करणे जवळजवळ अशक्यच आहे.
नवशिक्यांसाठी गणिताची भाषासुद्धा अंमळ क्लिष्टच आहे. अगदी साधेसुधे शब्दांनाही (किंवा, केवळ) गणितात दैनंदिन व्यवहारापेक्षा अधिक नेमका अर्थ असतो. तसेच कित्येक शब्द, जसे उघड आणि क्षेत्र, यांना गणितात विशेष अर्थ असतो. तसेच गणितात सारणिक आणि कलनीय अशा तांत्रिक संज्ञाही आहेत. या विशेष नोटेशन आणि तांत्रिक संज्ञांमागे एक मोठेच कारण आहे. ते म्हणजे, गणिताला दैनंदिन व्यवहारातील बोलीपेक्षा अधिक नेमकेपणा लागतो. भाषेच्या आणि तर्काच्या या नेमकेपणांस गणिती "काटेकोरपणा" म्हणतात.
मूलतः काटेकोरपणा हे गणितातील सिद्धतांसाठी आवश्यक आहे. शिस्तबद्ध कार्यकारणभाव लावून मूळ वाक्यांपासून प्रमेये सिद्ध करण्याची गणितींची इच्छा असते. अंतःप्रेरणा आयत्या वेळेस दगा देऊ शकते. त्यामुळे चुकीचे सिद्धान्तही मांडले जाऊ शकतात. गणिताच्या इतिहासात असे अनेक वेळा झालेही आहे. हे टाळण्यासाठी काटेकोरपणा आवश्यक ठरतो. काटेकोरपणा काळानुसार कमी-अधिक झालेला आहे.
ग्रीकांच्या काळी सिद्धतांचे मुद्दे विस्तृत रितीने मांडण्यावर भर होता. न्यूटनच्या काळी काटकोरपणा त्या मानाने कमी होता. न्यूटनने वापरलेल्या व्याख्यांमधील कच्च्या दुव्यांमुळे १९ व्या शतकात काळजीपूर्वक विश्लेषण आणि औपचारिक सिद्धतांचा पुन्हा उदय झाला. संगणकाच्या मदतीने लिहिलेल्या सिद्धता वापरल्या जाव्यात अथवा नाही यावर आजच्या गणितींमध्ये मतभेद आहेत. अतिभव्य आकडेमोडींचा पडताळा करणे अत्यंत अवघड असल्याने अशा प्रकारच्या सिद्धतांमध्ये अपेक्षित काटेकोरपणाचा अभाव असू शकतो. परंपरेच्या दृष्टीने मूलवाक्ये ही स्वयंप्रकाशित तथ्ये होती. परंतु, त्यांत ब-याच व्यावहारिक अडचणी आहेत. औपचारिक दृष्टीने पाहता, मूलवाक्य म्हणजे चिन्हांनी बनलेले केवळ एक नाम असते, ज्याचा मूळ अर्थ त्या-त्या मूळवाक्यांच्या विधिविधानातील सूत्रांच्या संदर्भातच असतो.
सगळ्याच गणितास मूलवाक्याच्या आधाराने सिद्ध करणे हे हिलबर्टच्या आज्ञावलीचे उद्दिष्ट होते. परंतु गोडेलच्या अपूर्णतेच्या सिद्धान्तानुसार कुठल्याही यथोचित मूळ वाक्यांच्या विधिविधानात सिद्ध न करता येण्याजोगी सूत्रे असतातच. त्यामुळे गणिताचे संपूर्ण मूलवाक्यायन अशक्य आहे. इतके असले तरी गणित हे कुठल्यातरी संच सिद्धांतातील (संचप्रवादातील) मूळवाक्यायन आहे असे समजले जाते. या दृष्टीने पहाता प्रत्येक गणिती वाक्य किंवा सिद्धान्त हा संचसिद्धान्तातील सूत्रांच्या रूपात मांडला जाऊ शकतो.
गणितातला "पाय"(π)
याबद्दलचा विस्तृत लेख येथे आहे.
ग्रीक भाषेतले अक्षर "पाय" "पाय x व्यासाची लांबी = परीघाची लांबी" ह्या वर्तुळासंबंधित समीकरणात रूढीने वापरण्यात येते आणि त्यात
पायची किंमत जवळ जवळ ३.१४१५९ आहे.
फर्मॅटचे "शेवटचे प्रमेय"
पिएर फर्मॅट (इ.स. १६०१ -१६६५) हे एक बुद्धिमान फ्रेंच गणिती होते. वास्तविक कायदेशास्त्राच्या शिक्षणानंतर ते सरकारी नोकरीत
वकिलीचा व्यवसाय करत असत, पण गणितशास्त्राचा अभ्यास हा त्यांचा आवडता छंद होता. " क्षन+ यन= ज्ञन "
ह्या 'साध्यासरळ' समीकरणात 'न' ह्या घाताची किंमत २ हून अधिक असा कुठलाही पूर्णांक असेल तर त्या समीकरणाचे समाधान करणार्या 'क्ष', 'य', आणि 'ज्ञ' ह्या अव्यक्तांच्या पूर्णांकात कोणत्याही किंमती नाहीत" असे एक प्रमेय आपणच मांडून "त्या प्रमेयाची एक खास सिद्धता मी शोधून काढली आहे, पण ह्या पानावरची (छापील मजकुराभोवतीची) समासाची जागा ती सिद्धता लिहायला अपुरी आहे" असेही फर्मॅटनी एका गणिताच्या पुस्तकात लिहून ठेवले होते!
फर्मॅट ह्यांच्या निधनानंतर हे प्रमेय "फर्मॅटचे शेवटचे प्रमेय" ह्या नावाने गणितशास्त्रात प्रसिद्धीला आले. सुमारे ३३० वर्षे ते प्रमेय सिद्ध करण्याचे किंवा ते चूक असल्याचे सिद्ध करायचे जंगी प्रयत्न अनेक बुद्धिमान गणितज्ञांनी केले, पण त्या प्रदीर्घ काळात कोणालाही त्यात यश मिळाले नव्हते! सरतेशेवटी आंड्र्यू वाइल्स ह्या ब्रिटिश गणितज्ञाने अनेक वर्षांच्या भगीरथ प्रयत्नाने १९९४ साली ते प्रमेय अचूकपणे सिद्ध केले!
काही काही लोकोत्तर बुद्धिमंतांच्या वेगवेगळ्या ज्ञानशाखांमधल्या अशा प्रचंड भरार्या पाहण्यात परमेश्वरदर्शन घडते.
पिएर फर्मॅट, रेने देकार्त, आणि ब्लेस पास्कॅल हे तीन श्रेष्ठ फ्रेंच गणिती समकालीन होते.
प्रसिद्ध गणिती
- पिएर फर्मा
- रेने देकार्त
- ब्लेस पास्कॅल
- कार्ल फ़्रिडरीश गाऊस
- लिओनार्ड ऑइलर
- बर्नार्ड रिमान
- आंड्र्यू वाइल्स
इतर वाचनीय
बाह्य दुवे
साचा:Link FA साचा:Link FA साचा:Link FA साचा:Link FA साचा:Link FA साचा:Link FA