Jump to content

"लॉगॅरिदम" च्या विविध आवृत्यांमधील फरक

विकिपीडिया, मुक्‍त ज्ञानकोशातून
Content deleted Content added
छो added Category:गणित using HotCat
(चर्चा | योगदान)
No edit summary
ओळ १: ओळ १:
गणितामध्ये '''लॉगॅरिदम''' (Logarithm) [[घातांक|घातांकाच्या]] व्यस्त क्रिया आहे. स्कॉटिश गणितज्ञ जॉन नेपियर यांनी प्रतिपादीत केलेल्या या क्रियेमुळे अनेक गणनांना सोपे केले जाऊ शकते. लॉगॅरिदममुळे गुणाकार आणि भागाकार यांसारख्या तुलनेने क्लिष्ट क्रियांना बेरीज आणि वजाबाकी यासारख्या सोप्या क्रियांमध्ये बदलता येऊ शकते. एखाद्या संख्येचा लॉगॅरिदम म्हणजे दुसऱ्या एका निश्चित संख्येचा, आधारांकाचा (बेस), निश्चित [[घात]] जो चढवल्यावर तो क्रमांक मिळेल. उदाहरणार्थ, १००० चा १० आधारांकाचा लॉगॅरिदम ३ आहे, कारण १० चा तिसरा घात म्हणजे १००० (१०<sup>३</sup> = १० x १० x १० = १०००). घातांकीकरण (एक्सपोनेन्शिएशन) या क्रियेमध्ये कोणत्याही धन [[वास्तव संख्या|वास्तव संख्येचा]] वास्तव घात घेतला जाऊ शकतो व तो नेहमी धन असतो, म्हणून लॉगॅरिदम कोणत्याही धन वास्तव संख्या ''b'' आणि ''x'' साठी काढला जाऊ शकतो, जिथे ''b'' बरोबर १ नाही. ''x'' या संख्येचा ''b'' आधारांकाचा लॉगॅरिदम log<sub>''b''</sub>(''x'') असा दर्शवला जातो, व तो ''y'' या अद्वितीय संख्येइतका असतो;
गणितामध्ये '''लॉगॅरिदम''' (Logarithm) ही [[घातांक|घातांकाच्या]] विरुद्ध क्रिया आहे. स्कॉटिश गणितज्ञ जॉन नेपियर यांनी सुचविलेल्या या युक्तीमुळे गुणाकार-भागाकार, वर्ग-घन करणे वर्गमूळ-घनमूळ काढणे आदी क्रिया सोप्या झाल्या. लॉगॅरिदममुळे गुणाकार आणि भागाकार यांसारख्या तुलनेने क्लिष्ट क्रियांना बेरीज आणि वजाबाकी यासारख्या सोप्या क्रियांमध्ये बदलता येऊ शकते. एखाद्या संख्येचा लॉगॅरिदम म्हणजे एक हा अंक सोडून दुसऱ्या कोणत्याही आधारांकावर (बेस-bवर) कोणता [[घात-x]] चढवल्यावर ती संख्या मिळते तो अंक. उदाहरणार्थ, आधारांक १० चा तिसरा घात म्हणजे १००० (१०<sup>३</sup> = १० x १० x १० = १०००). म्हणून, १००० चा १० आधारांकी लॉगॅरिदम ३ आहे. घातांकीकरण (एक्सपोनेन्शिएशन) या क्रियेमध्ये कोणत्याही धन [[वास्तव संख्या|वास्तव संख्येचा]] वास्तव घात काढता येतो व तो नेहमी धन असतो, म्हणून ''b'' आणि ''x'' सारख्या कोणत्याही धन वास्तव संख्या वापरून लॉगॅरिदम काढता येतो. (येथे ''b'' बरोबर १ नाही.) ''x'' या संख्येचा ''b'' आधारांकी लॉगॅरिदम log<sub>''b''</sub>(''x'') असा दर्शवला जातो, व तो ''y'' या अद्वितीय संख्येइतका असतो;
:''b''<sup>''y''</sup> = ''x''.
:''b''<sup>''y''</sup> = ''x''.



०९:४८, १६ एप्रिल २०१६ ची आवृत्ती

गणितामध्ये लॉगॅरिदम (Logarithm) ही घातांकाच्या विरुद्ध क्रिया आहे. स्कॉटिश गणितज्ञ जॉन नेपियर यांनी सुचविलेल्या या युक्तीमुळे गुणाकार-भागाकार, वर्ग-घन करणे वर्गमूळ-घनमूळ काढणे आदी क्रिया सोप्या झाल्या. लॉगॅरिदममुळे गुणाकार आणि भागाकार यांसारख्या तुलनेने क्लिष्ट क्रियांना बेरीज आणि वजाबाकी यासारख्या सोप्या क्रियांमध्ये बदलता येऊ शकते. एखाद्या संख्येचा लॉगॅरिदम म्हणजे एक हा अंक सोडून दुसऱ्या कोणत्याही आधारांकावर (बेस-bवर) कोणता घात-x चढवल्यावर ती संख्या मिळते तो अंक. उदाहरणार्थ, आधारांक १० चा तिसरा घात म्हणजे १००० (१० = १० x १० x १० = १०००). म्हणून, १००० चा १० आधारांकी लॉगॅरिदम ३ आहे. घातांकीकरण (एक्सपोनेन्शिएशन) या क्रियेमध्ये कोणत्याही धन वास्तव संख्येचा वास्तव घात काढता येतो व तो नेहमी धन असतो, म्हणून b आणि x सारख्या कोणत्याही धन वास्तव संख्या वापरून लॉगॅरिदम काढता येतो. (येथे b बरोबर १ नाही.) x या संख्येचा b आधारांकी लॉगॅरिदम logb(x) असा दर्शवला जातो, व तो y या अद्वितीय संख्येइतका असतो;

by = x.

उदाहरणार्थ, ६४ = २, म्हणून,

log(६४) = ६

म्हणजे ६४ चा २ आधारांकाचा लॉग (log) बरोबर ६.

लॉगॅरिदममधील नियम

गुणाकाराचा लॉगॅरिदम म्हणजे गुणाकारातील संख्यांच्या लॉगॅरिदमची बेरीज; भागाकाराचा लॉगॅरिदम म्हणजे त्यातील संख्यांची वजाबाकी; एखाद्या संख्येच्या "प"-व्या घाताचा लॉग म्हणजे प गुणिले त्या संख्येचा लॉग आणि एखाद्या संख्येच्या "त"-व्या घातमूलाचा लॉग म्हणजे त्या संख्येचा लॉग भागिले "त".

सुत्र उदाहरण
गुणाकार
भागाकार
घातांक
घातमूल