"दत्तात्रेय रामचंद्र कापरेकर" च्या विविध आवृत्यांमधील फरक
छोNo edit summary |
|||
ओळ ३६: | ओळ ३६: | ||
८१,९२,००,००,००,००,००,०००=(८+१+९+२+०+०+०+०+०+०+०+०+०+०+०+०+०)<sup>१३</sup>=२०<sup>१३</sup>. |
८१,९२,००,००,००,००,००,०००=(८+१+९+२+०+०+०+०+०+०+०+०+०+०+०+०+०)<sup>१३</sup>=२०<sup>१३</sup>. |
||
==१०८९== |
|||
तिन्ही अंक सारखे अंक नसलेली तीन अंकी संख्या आणि तिचे अंक उलट करून आलेली संख्या यांची वजाबाकी करावी. आलेल्या उत्तरातली संख्या आणि तिची उलट संख्या यांची बेरीज करावी. उत्तर १०८९ येईल. उदा० ७४१-१४७=५९४, ५९४+४९५=१०८९.<br /> |
|||
६०३-३०६=२९७; २९७+७९२=१०८९. |
|||
सिद्धता: -<br /> |
|||
(१००अ+१०ब+क)-(१००क+१०ब+अ)=(९९अ-९९क)=(१००अ-अ)-(१००क-क)=१००(अ-क)+(क-अ); म्हणजे अ-क चीकिंमत १ असेल तर (१००-१=)०९९, २ असेल तर (२००-२=)१९८, ३ असेल तर २९७ वगैरे. म्हणजे ९९च्या पाढ्यातली संख्या, ९९न. तिच्या उलट संख्या ९९(११-न). दोघांची बेरीज ९९न+९९(११-न)=९९ गुणिले ११=१०८९. |
|||
१७:५३, ३० मार्च २०१३ ची आवृत्ती
द.रा. कापरेकर (जन्म : डहाणू-ठाणे जिल्हा, महाराष्ट्र, १७ जानेवारी १९०५; मृत्यू : १९८६)) हे देवळाली(नाशिक)मध्ये राहणारे एक जागतिक कीर्तीचे गणितज्ञ होते. त्यांच्या महाविद्यालयीन काळात त्यांना गणितातले रँग्लर परांजपे पारितोषिक मिळाले होते. ते नाशिकजवळच्या देवळाली येथे शिक्षक होते आणि १९६२मध्ये निवृत्त झाले. त्यांची राहणी अत्यंत साधी होती. धोतर, कोट, टोपी हा त्यांचा नित्याचा वेश होता. नोकरीच्या काळात आणि निवृत्तीनंतरही कापरेकरांचा गणितातील आकड्यांशी खेळ चालूच होता. नोकरीच्या काळात त्यांची यासाठी हेटाळणी होत असे.
महाविद्यालयीन स्तरावर अनेक संशोधनपर लेख प्रसिद्ध होतात, पण शालेय स्तरावर आणि शाळा मास्तरांकडून असे लेख लिहिले जाणे अतिशय अपवादात्मक असते. दत्तात्रय रामचंद्र कापरेकर यांचे लेख हे त्यांतले एक होते.
१९७५ साली अमेरिकेतील प्रा. मार्टिन गार्डिनर यांनी कापरेकरांच्या संशोधनाची दखल घेतली आणि त्यांच्या संशोधनावर आधारित Mathematical Games या सदराखाली Scientific American या मासिकात लेख लिहिला, आणि द.रा. कापरेकर भारतातच नाही तर जगभरात प्रसिद्ध झाले.
स्वीडनच्या World Dictionary of Mathematics या ग्रंथात द.रा. कापरेकरांच्या नावाचा अंतर्भाव केला आहे.
४९५- कापरेकर स्थिरांक
एक तिन्ही अंक सारखे नसलेली तीन आकडी संख्या घ्या. तिचे आकडे वाढत्या आणि उतरत्या क्रमाने लिहा. येणाऱ्या संख्यांची वजाबाकी करा. असे सतत करत रहा . शेवटी ४९५ ही संख्या येईल. हाच कापरेकर स्थिरांक (Kaprekar Constant).
उदा० ४२९ -> ९४२ - २४९ = ६९३; ६९३ -> ९६३ - ३६९ = ५९४ -> ९५४ -४५९ =४९५. ४९५ हा कापरेकर स्थिरांक.
००४ ->४०० - ००४ = ३९६, नंतर वरच्या प्रमाणेच.
११२ -> २११-११२ = ०९९ -> ९९० -०९९ = ८९१ -> ९८१ -१८९ = ७९२ -> ९७२ - २७९ = ६९३, नंतर पहिल्याप्रमाणेच.
६१७४ - कापरेकर स्थिरांक
चारही अंक सारखे नसलेल्या चार आकडी संख्येपासून ६१७४ हा स्थिरांक मिळतो.
उदा० ४३२०-०२३४=४०८६; ८६४०-०४६८=८१७२; ८७२१-१२७८=७४४३; ७४४३-३४४७=३९९६; ९९६३-३६९९=६२६४; ६६४२-२४६६=४१७६; ७६४१-१४६७=६१७४. हा कापरेकर स्थिरांक आहे. ६१७४वर परत प्रक्रिया चालू केली तर परत ६१७४ हाच आकडा येतो. (७६४१-१४६७=६१७४)
कापरेकर संख्या
संख्येच्या वर्गाचे दोन हिस्से केले आणि त्या हिश्श्यांची बेरीज मूळ संख्येइतकीच आली तर त्या मूळ संख्येला कापरेकर संख्या म्हणतात.
उदा० ४५२=२०२५ आणि २०+२५=४५(मूळ संख्या). म्हणून ४५ ही कापरेकर संख्या.
९९९२=९९८००१ आणि ९९८+००१=९९९(मूळ संख्या). म्हणूम ९९९ही कापरेकर संख्या.
१, ९, ४५, ५५, ९९, २९७, ७०३, ९९९ , २२२३, २७२८, ४८७९, ४०५०, ५०५०, ५२९२, ७२७२, ७७७७, ९९९९ , १७३४४, २२२२२, ३८९६२, ७७७७८, ८२५६५, ९५१२१, ९९९९९, १४२८५७, १४८१४९, १८१८१९, १९७११०, २०८४९५, ३१८६८२, ३२९९६७, ३५१३५२, ३५६६४३, ३९०३१३, ४६१५३९, ४६६८३०, ४९९५००, ५००५००, ५३३१७० या सर्व कापरेकर संख्या आहेत.
दत्तात्रय संख्या
१३, ५७, १६०२, ४०२०४ या संख्यांना दत्तात्रय संख्या म्हणतात. कारण, या संख्यांच्या वर्गाचे दोन किंवा अधिक हिस्से केले तर त्यांतील प्रत्येक हिस्सा हा पूर्ण वर्ग असतो.
उदा० १३२=१६।९.(१६ आणि ९ हे पूर्ण वर्ग आहेत.)
५७२=३२४।९;
१६०२२=२५६।६४।०४;
४०२०४२=१६।१६।३६।१६।१६.
कापरेकरांनी शोधलेल्या आणखी काही खास संख्या
५१२, ५८३२, आणि ८१,९२,००,००,००,००,००,०००, वगैरे.
५१२=(५+१+२)३.
५८३२=(५+८+३+२)३.
८१,९२,००,००,००,००,००,०००=(८+१+९+२+०+०+०+०+०+०+०+०+०+०+०+०+०)१३=२०१३.
१०८९
तिन्ही अंक सारखे अंक नसलेली तीन अंकी संख्या आणि तिचे अंक उलट करून आलेली संख्या यांची वजाबाकी करावी. आलेल्या उत्तरातली संख्या आणि तिची उलट संख्या यांची बेरीज करावी. उत्तर १०८९ येईल. उदा० ७४१-१४७=५९४, ५९४+४९५=१०८९.
६०३-३०६=२९७; २९७+७९२=१०८९.
सिद्धता: -
(१००अ+१०ब+क)-(१००क+१०ब+अ)=(९९अ-९९क)=(१००अ-अ)-(१००क-क)=१००(अ-क)+(क-अ); म्हणजे अ-क चीकिंमत १ असेल तर (१००-१=)०९९, २ असेल तर (२००-२=)१९८, ३ असेल तर २९७ वगैरे. म्हणजे ९९च्या पाढ्यातली संख्या, ९९न. तिच्या उलट संख्या ९९(११-न). दोघांची बेरीज ९९न+९९(११-न)=९९ गुणिले ११=१०८९.
हा लेख/विभाग स्वत:च्या शब्दात विस्तार करण्यास मदत करा. |