Jump to content

डिरिचलेट अविभाज्य

विकिपीडिया, मुक्‍त ज्ञानकोशातून

डिरिचलेट अविभाज्य[संपादन]

गणितात, जर्मन गणितज्ञ पीटर गुस्ताव लेज्यूने डिरिचलेट यांच्या नंतर डिरिचलेट इंटिग्रल म्हणून ओळखले जाणारे अनेक अविभाज्य आहेत, त्यापैकी एक सकारात्मक वास्तविक रेषेवरील sinc फंक्शनचे अयोग्य अविभाज्य आहे:

हे अविभाज्य पूर्णपणे अभिसरण नाही, म्हणजे नाही, आणि म्हणून Dirichlet integral हे लेबेस्ग्यू एकीकरणाच्या अर्थाने अपरिभाषित आहे. तथापि, अयोग्य रिमन इंटिग्रल किंवा सामान्यीकृत रीमन किंवा हेनस्टॉक-कुर्झवेल इंटिग्रल या अर्थाने परिभाषित केले आहे. [१] [२] हे अयोग्य अविभाज्यांसाठी डिरिचलेट चाचणी वापरून पाहिले जाऊ शकते. जरी सायन इंटिग्रल, सिंक फंक्शनचे अँटीडेरिव्हेटिव्ह (स्थिरापर्यंत) हे प्राथमिक फंक्शन नसले तरी इंटिग्रलचे मूल्य (रीमन किंवा हेनस्टॉक या अर्थाने) विविध मार्गांनी काढले जाऊ शकते, ज्यात लॅपेस ट्रान्सफॉर्म, दुहेरीचा समावेश आहे. इंटिग्रेशन, इंटिग्रल चिन्हाखाली वेगळे करणे, कॉन्टूर इंटिग्रेशन आणि डिरिचलेट कर्नल.

संदर्भ[संपादन]

  1. ^ Bartle, Robert G. (10 June 1996). "Return to the Riemann Integral" (PDF). The American Mathematical Monthly. 103 (8): 625–632. doi:10.2307/2974874. JSTOR 2974874. Archived from the original (PDF) on 2017-11-18. 2022-09-06 रोजी पाहिले.
  2. ^ Bartle, Robert G.; Sherbert, Donald R. (2011). "Chapter 10: The Generalized Riemann Integral". Introduction to Real Analysis. John Wiley & Sons. pp. 311. ISBN 978-0-471-43331-6.