"आम्ल" च्या विविध आवृत्यांमधील फरक

विकिपीडिया, मुक्‍त ज्ञानकोशातून
Content deleted Content added
छो आम्ल
(चर्चा | योगदान)
No edit summary
ओळ १: ओळ १:
जे आम्लारी (अल्कली) पदार्थांबरोबर रासायनिक प्रक्रियेत भाग घेतात, त्यांना आम्ल पदार्थ म्हणतात. आंबट चव आणि calcium सारख्या धातूंबरोबर व sodium carbonate सारख्या आम्लारी पदार्थांबरोबर रासायनिक प्रक्रियेत भाग घेणे हे आम्ल पदार्थांचे मुख्य गुणधर्म आहेत. पाण्याचे पी.एच. मूल्य ७ असते. आम्ल पदार्थांचे पी.एच मूल्य ७ पेक्षा कमी असते. पी.एच. मूल्य जितके कमी तितके त्याचे गुणधर्म तीव्र होतात .उदा.सल्फ्युरिक, नायट्रिक, हायड्रोक्लोरिक आणि फॉस्फोरिक आम्ल, कार्बोक्झिलिक आम्ल, सल्फाॅनिक आम्ल इत्यादी.
{{विकिdnaकरण}}
{{अशुद्धलेखन}}
{{भाषांतर}}
जे आम्लारी (अल्कली) पदार्थांबरोबर रासायनिक प्रक्रियेत भाग घेतात त्यांना आम्ल पदार्थ म्हणतात. आंबट चव आणि calcium सारख्या धातूंबरोबर व sodium carbonate सारख्या आम्लारी पदार्थांबरोबर रासायनिक प्रक्रियेत भाग घेणे हे आम्ल पदार्थांचे मुख्य गुणधर्म आहेत. पाण्याचे पी.एच. मूल्य ७ असते. आम्ल पदार्थांचे पी.एच मूल्य ७ पेक्षा कमी असते. पी.एच. मूल्य जितके कमी तितके त्याचे गुणधर्म तीव्र होतात.उदा.सलफुरिक, नायट्रिक, हायड्रोक्लोरिक आणि फॉस्फोरिक आम्ल आणि कार्बोक्झिलिक आम्ल, सल्फोनिक आम्ल .


Acetic acid (vinegar मध्ये वापरतात), Sulphuric acid (गाड्यांच्या battery मध्ये वापर) व tartaric acid(Baking मध्ये वापर) ही व्यवहारात वापरण्यात येणाऱ्या आम्लांची उदाहरणे आहेत. या उदाहरणावरून दिसून येते की आम्ल हे मिश्रण असू शकते आणि घन किंवा द्रव पदार्थ पण असू शकते.
Acetic acid (vinegar मध्ये वापरतात), Sulphuric acid (मोटारगाड्यांच्या battery मध्ये वापर) व tartaric acid (Baking मध्ये वापर) ही व्यवहारात वापरण्यात येणाऱ्या आम्लांची उदाहरणे आहेत. या उदाहरणांवरून दिसून येते की आम्ल हे मिश्रण असू शकते आणि घन किंवा द्रव पदार्थपण असू शकतो.


Hydrochloric acid हे वायुरूपात असून, पाण्यात विरघळल्यावर आम्लाचे गुणधर्म दर्शवते. तीव्र आम्ल पदार्थ हे धातूंवर गंज चढवतात; पण याला carboranes आणि boric acid असे अपवाद आहेत.
Hydrochloric acid हे वायुरूपात असून, पाण्यात विरघळल्यावर आम्लाचे गुणधर्म दर्शवते. तीव्र आम्ल पदार्थ हे धातूंवर गंज चढवतात; पण याला carbonic acid आणि boric acid असे अपवाद आहेत.


आम्ल पदार्थांच्या तीन व्याख्या आहेत: Arrhenius व्याख्या, Bronsted-Lowry वाख्या आणि Lewis व्याख्या. Arrhenius व्याख्येनुसार जे पदार्थ जल मिश्रणात hydronium (H+) विद्युतभारित कणांचे प्रमाण वाढवतात त्यांना आम्ल म्हणतात. Bronsted-Lowry च्या व्याख्येनुसार प्रोटॉन देणारे पदार्थ हे आम्ल पदार्थ असतात. व्यवहारात आढळणारी आम्ले ही जल मिश्रित किंवा पाण्यात विरघळणारी असतात. म्हणून या दोन्ही वाख्या एकमेकांना अनुसरून आहेत. आम्ल पदार्थात hydronium (H+) विद्युतभारित कण १०−७ मोल्स/लिटर पेक्षा कमी असतात. पी.एच. मूल्य हे आम्लाच्या कॉनसनट्रेशनची ऋण घातांक संख्या असते. म्हणून आम्ल पदार्थांचे पी.एच. मूल्य ७ पेक्षा कमी असते.
आम्ल पदार्थांच्या तीन व्याख्या आहेत: Arrhenius व्याख्या, Bronsted-Lowry वाख्या आणि Lewis व्याख्या. Arrhenius व्याख्येनुसार जे पदार्थ जल मिश्रणात hydronium (H+) विद्युतभारित कणांचे प्रमाण वाढवतात त्यांना आम्ल म्हणतात. Bronsted-Lowry च्या व्याख्येनुसार प्रोटॉन देणारे पदार्थ हे आम्ल पदार्थ असतात. व्यवहारात आढळणारी आम्ले ही जल मिश्रित किंवा पाण्यात विरघळणारी असतात. म्हणून या दोन्ही व्याख्या एकमेकांना पूरक आहेत. आम्ल पदार्थात hydronium (H+) विद्युतभारित कण मोल्स/लिटरपेक्षा कमी असतात. आम्लाच्या कॉन्सन्ट्रेशनची संख्या ऋण असते. म्हणून आम्ल पदार्थांचे पी.एच. मूल्य ७ पेक्षा कमी असते.


रसायन शास्त्रात Lewis व्याख्या प्रचलित आहेत. यानुसार Lewis आम्ल म्हणजे जी विद्युत-परमाणू स्वीकारतात ती.. ह्याचे उदाहरण म्हणजे धातूंचे कॅटायन, boron trifluoride व aluminium trichloride सारख्या विद्युत-परमाणूंची कमतरता असणारे रेणू. तीनही व्याख्यांनुसार hydronium विद्युतभारित कण हे आम्ल पदार्थ आहेत. पण Bronsted-Lowry आम्ल असणारी अल्कोहोल व अमीन ही Lewis आम्लारी आहेत. कारण या रेणूंमध्ये oxygen व nitrogen या अणूंवर जी लोन पेअर (दोन्हीं अणूंमध्ये न विभागलेली विद्युतपरमाणूंची जोडी) असते, ती देऊन ते आम्लारी पदार्थांचे गुणधर्म दाखवतात.
रसायन शास्त्रात Lewis व्याख्या प्रचलित आहेत. यानुसार Lewis आम्ल म्हणजे जी विद्युत-परमाणू स्वीकारतात ती.. ह्याचे उदाहरण म्हणजे धातूंचे कॅटायन, boron trifluoride व aluminium trichloride सारख्या विद्युत-परमाणूंची कमतरता असणारे रेणू. तीनही व्याख्यांनुसार hydronium विद्युतभारित कण हे आम्ल पदार्थ आहेत. पण Bronsted-Lowry आम्ल असणारी अल्कोहोल व अमीन ही Lewis आम्लारी आहेत. कारण या रेणूंमध्ये oxygen व nitrogen या अणूंवर जी लोन पेअर (दोन्हीं अणूंमध्ये न विभागलेली विद्युतपरमाणूंची जोडी) असते, ती देऊन ते आम्लारी पदार्थांचे गुणधर्म दाखवतात.


==अर्हेनियस आम्ल==
==अर्हेनियस आम्ल==
स्वीडिश रसायनतज्ज्ञ Arrhenius याने १८८४ साली, hydrogen आणि आम्ल गुणधर्मांमध्ये असणारा सबंध मांडला. पाण्यात विरघळल्यावर hydrogenच्या विद्युतभारित परमाणूंचे कॉन्सेन्ट्रेशन वाढवणाऱ्या पदार्थाला Lewis आम्ल म्हणता येईल. पाण्याच्या रेणूंचे रूपांतर hydronium(H+) आणि hydroxide (OH-) विद्युतभारित कणांमध्ये होते. याच्यावरूनच आम्लाची व्याख्या आली आहे.
H<sub>2</sub>O(l) + H<sub>2</sub>O(l) H<sub>3</sub>O+(aq) + OH−(aq)


पाण्यामध्ये पुष्कळअंशी रेणू अविभाजित असतात; पण खूप कमी रेणू सतत विद्युतभारित कणांत रूपांतरित होत असतात. पाणी न आम्ल आहे न आम्लारी; कारण पाण्यात hydronium व hydroxide विद्युतभारित कण नेहमी समप्रमाणात असतात. ते पाण्यात विरघळल्यावर hydroxide चे प्रमाण वाढवतात ते Arrhenius आम्लारी पदार्थ.. बरेचसे रसायन तज्‍ज्ञ hydrogen विद्युतभारित कण या शब्दाचा प्रयोग करतात, पण पाण्यामध्ये hydrogenचे न्युक्लिअस आढळत नाहीत. ते hydronium (H3O+) विद्युतभारित कणाच्या रूपात आढळतात.
स्वीडिश रासायनिक तज्ञ Arrhenius याने १८८४ साली, hydrogen आणि आम्ल गुणधर्मांमध्ये असणारा सबंध मांडला. पाण्यात विरघळल्यावर hydronium विद्युतभारित परमाणूंचे कॉन्सेन्ट्रेशन वाढवणाऱ्या पदार्थाला Lewis आम्ल म्हणता येईल. पाण्याच्या रेणूंचे रूपांतर hydronium(H+) आणि hydroxide (OH-) विद्युतभारित कणांमध्ये होते. याच्यावरूनच आम्लाची व्याख्या आली आहे.
H2O(l) + H2O(l) H3O+(aq) + OH−(aq)

पाण्यामध्ये पुष्कळअंशी रेणू अविभाजित असतात; पण खूप कमी रेणू सतत विद्युतभारित कणांत रूपांतरित होत असतात. पाणी न आम्ल आहे न आम्लारी; कारण पाण्यात hydronium व hydroxide विद्युतभारित कण नेहमी समप्रमाणात असतात. जे पाण्यात विरघळल्यावर hydroxide चे प्रमाण वाढवतात ते Arrhenius आम्लारी पदार्थ.. बरेचसे रसायन तज्‍ज्ञ hydrogen विद्युतभारित कण या शब्दाचा प्रयोग करतात पण पाण्यामध्ये hydrogen न्युक्लिअस आढळत नाहीत. ते hydronium (H3O+) विद्युतभारित कणाच्या ्रूपात आढळतात.


==Brønsted-Lowry आम्ल==
==Brønsted-Lowry आम्ल==
Arrhenius व्याख्येचा बऱ्याच ठिकाणी वापर होता असला तरी त्याचा प्रयोग मर्यादित आहे. १९२३ साली, जॉहॅन्स निकोलस ब्रॉन्स्टेड (Johannes Nicholas Brønsted) व थॉमस मार्टिन लोअरी (Thomas Martin Lowry) या रसायन तज्ज्ञांनी आम्ल व अम्लारीमध्ये होणाऱ्या प्रोटाॅनच्या अदलाबदलीचा शोध लावला. Brønsted-Lowry आम्ल म्हणजे जे पदार्थ Brønsted अम्लारीला प्रोटाॅन दान करतात. अर्हेनिअस व्याख्येपेक्षा Brønsted व्याख्या अधिक परिपूर्ण आहे. ॲसेटिक ॲसिडमध्ये होणारा रासायनिक बदल खाली दिला आहे:

Arrhenius व्याख्येचा बऱ्याच ठिकाणी वापर होता असला तरी त्याचा प्रयोग मर्यादित आहे. १९२३ साली, जॉहॅन्स निकोलस ब्रॉन्स्टेड (Johannes Nicholas Brønsted) व थॉमस मार्टिन लोअरी (Thomas Martin Lowry) या रसायन तज्ञांनी आम्ल व अम्लारी मध्ये होणाऱ्या प्रोटोनच्या आदलाबदलीचा शोध लावला. Brønsted-Lowry आम्ल म्हणजे जे पदार्थ Brønsted अम्लारीला प्रोटोन दान करतात. अर्हेनिअस व्याख्ये पेक्षा Brønsted व्याख्या अधिक परिपूर्ण आहे. ॲसेटिक ॲसिड मध्ये होणारा रासायनिक बदल खाली दिला आहे:
वरील प्रक्रियेच्या पहिल्या भागात ॲसेटिक ॲसिड हे आम्ल आहे हे सिद्ध करतात. पहिल्या भागात जळत विर्घळल्यावर hydronium देऊन ते अर्र्हेनिअस आम्ल सारखे वागतात तर जलाच्या रेणूला प्रोटोन देऊन ते Brønsted आम्लासारखे वागतात. पुढच्या भागात Brønsted अम्लासारखे ते अम्लारीला प्रोटोन देते पण hydronium देत नसल्यामुळे ते अर्र्हेनिअस आम्लाच्या व्याख्येस पात्र नाही ठरत. अर्हेनिअस व्याख्या फक्त विद्युत कणांत विभाजित होणाऱ्या रेणूंच्या आम्ल गुणधर्माचे समाधानकारक स्पष्टीकरण देते, पण Brønsted व्याख्या इतर रेणूंच्या आम्ल गुणधर्माचे स्पष्टीकरण देते. विविध स्थितींमध्ये Hydrogen chloride आणि ammonia एकत्र केल्यावर ammonium chloride हे क्षार बनते. खालील रासायनिक प्रक्रिया अर्हेनिअस व्याख्येच्या मर्यादा दर्शवतात :
वरील प्रक्रियेच्या पहिल्या भागात ॲसेटिक ॲसिड हे आम्ल आहे हे सिद्ध करतात. पहिल्या भागात जळत विरघळल्यावर hydronium देऊन ते अर्हेनिअस आम्ल सारखे वागतात, तर जलाच्या रेणूला प्रोटाॅन देऊन ते Brønsted आम्लासारखे वागतात. पुढच्या भागात Brønsted आम्लासारखे ते आम्लारीला प्रोटाॅन देते पण hydronium देत नसल्यामुळे ते अर्हेनिअस आम्लाच्या व्याख्येस पात्र ठरत नाही. अर्हेनिअस व्याख्या फक्त विद्युत कणांत विभाजित होणाऱ्या रेणूंच्या आम्ल गुणधर्माचे समाधानकारक स्पष्टीकरण देते, पण Brønsted व्याख्या इतर रेणूंच्या आम्ल गुणधर्माचे स्पष्टीकरण देते. विविध स्थितींमध्ये Hydrogen chloride आणि ammonia एकत्र केल्यावर ammonium chloride हे क्षार बनते. खालील रासायनिक प्रक्रिया अर्हेनिअस व्याख्येच्या मर्यादा दर्शवतात :


1. H3O+(aq) + Cl−(aq) + NH3 → Cl−(aq) + NH4+(aq)
1. H<sub>3</sub>O+(aq) + Cl−(aq) + NH<sub>3</sub> → Cl−(aq) + NH<sub>4</sub>+(aq)
2. HCl(benzene) + NH3(benzene) → NH4Cl(s)
2. HCl (benzene) + NH<sub>3</sub> (benzene) → NH<sub>4</sub>Cl(s)
3. HCl(g) + NH3(g) → NH4Cl(s)
3. HCl(g) + NH<sub>3</sub>(g) → NH<sub>4</sub>Cl(s)


पहिल्या भागात म्हणजे पाण्यात जेव्हा ही प्रक्रिया होते तेव्हा HCl अर्हेनिअस आम्लासारखे हायड्रोनिअम देते. पण पुढील दोन भागात हायड्रोनिअम देत नसले तरी प्रोटोनची बदली होते. म्हणून बेन्झीन मध्ये होणारी प्रक्रिया किंवा वायू स्थितीत असताना होणारी प्रक्रिया ही आम्ल आणि आम्लारी मध्ये होणारी प्रक्रियाच आहे पण अर्हॆनिअस व्याख्या ते समजावू शकत नाही.
पहिल्या भागात म्हणजे पाण्यात जेव्हा ही प्रक्रिया होते तेव्हा HCl अर्हेनिअस आम्लासारखे हायड्रोनिअम देते. पण पुढील दोन भागात हायड्रोनिअम देत नसले तरी प्रोटाॅनची बदली होते. म्हणून बेन्झीनमध्ये होणारी प्रक्रिया किंवा वायू स्थितीत असताना होणारी प्रक्रिया ही आम्ल आणि आम्लारी मध्ये होणारी प्रक्रियाच आहे, पण अर्हॆनिअस व्याख्या ते समजावू शकत नाही.


'''Lewis आम्ल'''
'''Lewis आम्ल'''
गिल्बर्ट.एन.लुइस यांनी १९२३ साली आम्लाची एक नवीन व्याख्या दिली. या व्याख्येत प्रोटोनबदली शिवाय होणाऱ्या आम्ल-अम्लारी प्रक्रियेंचेदेखील स्पष्टीकरण आहे. लुइस आम्ल म्हणजे जे दुसऱ्या रेणूकडून इलेक्ट्रॉनची जोडी स्वीकारते. Bronsted आम्ल-आम्लारी प्रक्रियेत प्रोटोन ची आदलाबदली होते तर लुइस आम्ल-आम्लारी प्रक्रियेत इलेक्ट्रॉन च्या जोडीची. सगळे Bronsted आम्ल लुइस आम्ल असतात पण सगळे लुइस आम्ल Bronsted आम्ल नसतात. खालील उदाहरण वरील वाक्याचे स्पष्टीकरण देते:
गिल्बर्ट.एन.लुईस यांनी १९२३ साली आम्लाची एक नवीन व्याख्या दिली. या व्याख्येत प्रोटाॅनबदली शिवाय होणाऱ्या आम्ल-अम्लारी प्रक्रियेंचेदेखील स्पष्टीकरण आहे. लुईस आम्ल म्हणजे जे दुसऱ्या रेणूकडून इलेक्ट्रॉनची जोडी स्वीकारते. Bronsted आम्ल-आम्लारी प्रक्रियेत प्रोटाॅनची अदलाबदली होते तर लुईस आम्ल-आम्लारी प्रक्रियेत इलेक्ट्रॉनच्या जोडीची. सगळी Bronsted आम्ले लुईस आम्ले असतात पण सगळी लुईस आम्ले Bronsted आम्ले नसतात. खालील उदाहरण वरील वाक्याचे स्पष्टीकरण देते:
पहिल्या भागात fluoride विद्युतभारित कण boron trifluoride ला दोन इलेक्ट्राॅन देते आणि मग ते tetraborofluorate मध्ये रुपांतरित होते. ही इलेक्ट्राॅनची जोडी बोरॉन व फ्लोरीन या अणूंच्या मध्ये असते; आणि फ्लोरीन न्युक्लिअसहून लांब असते. म्हणून फ्लोरीन आयन (विद्युतभारित कण) इलेक्ट्रॉनची जोडी देतो.. इलेक्ट्रॉनची जोडी स्वीकारत असल्यामुळे boron trifluoride हे एक लुइस आम्ल आहे. पण हीच प्रक्रिया Bronsted व्याख्येत बसत नाही कारण प्रोटोन ची अदलाबदल होत नाही आहे. अमोनियाची प्रक्रिया मात्र लुइस आणि Bronsted या दोन्ही व्याख्यांमध्ये बसते. प्रोटोन स्वीकारल्यामुळे अमोनिया एक Bronsted आम्लारी आहे तर ते इलेक्ट्रॉनची जोडी hydronium ला देत असल्याने एक लुइस अम्लारी सुद्धा आहे. इलेक्ट्रॉन दान करणारे रेणू लुइस अम्लारी मानले जातात. तर जे इलेक्ट्रॉनची जोडी स्वीकारतात ती लुइस आम्ले असतात. H3O+ मधून जेव्हा हायड्रोजन आयन वेगळा होतो तेव्हा, इलेक्ट्रॉनची जोडी ऑक्सिजन कडे जाते; म्हणून पाण्याचा रेणू एका लुइस आम्लाप्रमाणे वागतो. स्थितीअनुसार लुइस आम्लाला electrophile किंवा oxidizer पण म्हणतात.
पहिल्या भागात fluoride विद्युतभारित कण boron trifluoride ला दोन इलेक्ट्राॅन देते आणि मग ते tetraborofluorate मध्ये रूपांतरित होते. ही इलेक्ट्राॅनची जोडी बोरॉन व फ्लोरीन या अणूंच्या मध्ये असते; आणि फ्लोरीन न्युक्लिअसहून लांब असते. म्हणून फ्लोरीन आयन (विद्युतभारित कण) इलेक्ट्रॉनची जोडी देतो.. इलेक्ट्रॉनची जोडी स्वीकारत असल्यामुळे boron trifluoride हे एक लुईस आम्ल आहे. पण हीच प्रक्रिया Bronsted व्याख्येत बसत नाही कारण प्रोटाॅनची अदलाबदल होत नाही आहे. अमोनियाची प्रक्रिया मात्र लुईस आणि Bronsted या दोन्ही व्याख्यांमध्ये बसते. प्रोटाॅन स्वीकारल्यामुळे अमोनिया एक Bronsted आम्लारी आहे तर ते इलेक्ट्रॉनची जोडी hydronium ला देत असल्याने एक लुईस आम्लारीसुद्धा आहे. इलेक्ट्रॉन दान करणारे रेणू लुईस आम्लारी मानले जातात. तर जे इलेक्ट्रॉनची जोडी स्वीकारतात ते लुईस आम्ले असतात. H<sub>3</sub>O+ मधून जेव्हा हायड्रोजन आयन वेगळा होतो तेव्हा, इलेक्ट्रॉनची जोडी ऑक्सिजनकडे जाते; म्हणून पाण्याचा रेणू एका लुईस आम्लाप्रमाणे वागतो. स्थितीनुसार लुईस आम्लाला electrophile किंवा oxidizer पण म्हणतात.


Bronsted व्याख्या ही सर्वात जास्त प्रचलित आहे. आम्ल-आम्लारी प्रक्रिया म्हणजे प्रोटोन अदलाबदल हे मानले जाते.
Bronsted व्याख्या ही सर्वात जास्त प्रचलित आहे. आम्ल-आम्लारी प्रक्रिया म्हणजे प्रोटाॅन अदलाबदल हे मानले जाते.
'''
'''
Dissociation (विभाजन) आणि equilibrium (समतोल)'''
Dissociation (विभाजन) आणि equilibrium (समतोल)'''


आम्लाच्या रासायनिक प्रक्रिया मुख्यतः HA H+ + A- या रूपाच्या असतात. यात HA हे आम्ल आहे आणि A- हे त्याचे Conjugate आम्लारी आहे. कॉन्ज्युगेट आम्ल-आम्लारी मध्ये फक्त एक प्रोटोनचा फरक असतो. प्रोटोन मिळण्याने किंवा काढण्याने त्यांचे एकमेकांमध्ये रूपांतर होते. प्रोटोन वाढला तर त्याला प्रोटोनेशन असे म्हणतात आणि कमी झाला तर डीप्रोटोनेशन असे म्हणतात. आम्ल विद्युतभारित व त्याचे कॉन्ज्युगेट आम्लारी चार्जविरहित असू शकतात. या स्थितीत प्रक्रिया HA+ H+ + A- अशी असते. मिश्रणात आम्ल व त्याच्या कॉन्ज्युगेट आम्लारीमध्ये एक समतोल किंवा इक्विलिब्रिअम असतो. K एक न बदलणारी संख्या आहे ज्याला इक्विलिब्रिअम कॉन्स्टंट असे म्हणतात. ती मिश्रणातल्या सर्व घटकांच्या स्थिर स्थितीत (इक्विलिब्रिअम)मध्ये असणाऱ्या संख्यांमधला संबंध देते. त्या पदार्थाचे कॉन्सन्ट्रेशन (मोल/लिटर मिश्रण)मध्ये देतात. म्हणजे [H<sub>2</sub>O] असे लिहिले असेल तर ते जलाचे कॉन्सेन्ट्रेशन सांगते. Ka आम्ल-आम्लारीच्या प्रक्रियेसाठी वापरले जाते. प्रक्रियेत भाग घेणाऱ्या पदार्थांच्या कॉन्सेन्ट्रेशनला प्रक्रिया पूर्ण झाल्यावर मिळणाऱ्या पदार्थांच्या कॉन्सेन्ट्रेशनने भागल्यावर Ka हे कॉन्स्टंट मिळते. आम्लाच्या प्रक्रियेत आम्लाचे कॉन्सेन्ट्रेशन हे अपूर्णांकातील भाजक तर हायड्रोनिअम (?) व कॉन्ज्युगेट आम्लारीच्या कॉन्सेन्ट्रेशनचा गुणाकार अपूर्णांकातील अंशात येतो.
आम्लाच्या रासायनिक प्रक्रिया मुख्यतः HA H+ + A- या रूपाच्या असतात. यात HA हे आम्ल आहे आणि A- हे त्याचे Conjugate आम्लारी आहे. कॉन्ज्युगेट आम्ल-आम्लारी मध्ये फक्त एक प्रोटाॅनचा फरक असतो. प्रोटाॅन मिळण्याने किंवा काढण्याने त्यांचे एकमेकांमध्ये रूपांतर होते. प्रोटाॅन वाढला तर त्याला प्रोटोनेशन असे म्हणतात आणि कमी झाला तर डीप्रोटोनेशन असे म्हणतात. आम्ल विद्युतभारित व त्याचे कॉन्ज्युगेट आम्लारी चार्जविरहित असू शकतात. या स्थितीत प्रक्रिया HA+ H+ + A- अशी असते. मिश्रणात आम्ल व त्याच्या कॉन्ज्युगेट आम्लारीमध्ये एक समतोल किंवा इक्विलिब्रिअम असतो. K एक न बदलणारी संख्या आहे ज्याला इक्विलिब्रिअम कॉन्स्टंट असे म्हणतात. ती मिश्रणातल्या सर्व घटकांच्या स्थिर स्थितीत (इक्विलिब्रिअम)मध्ये असणाऱ्या संख्यांमधला संबंध देते. त्या पदार्थाचे कॉन्सन्ट्रेशन (मोल/लिटर मिश्रण)मध्ये देतात. म्हणजे [H<sub>2</sub>O] असे लिहिले असेल तर ते जलाचे कॉन्सेन्ट्रेशन सांगते. Ka आम्ल-आम्लारीच्या प्रक्रियेसाठी वापरले जाते. प्रक्रियेत भाग घेणाऱ्या पदार्थांच्या कॉन्सेन्ट्रेशनला प्रक्रिया पूर्ण झाल्यावर मिळणाऱ्या पदार्थांच्या कॉन्सेन्ट्रेशनने भागल्यावर Ka हे कॉन्स्टंट मिळते. आम्लाच्या प्रक्रियेत आम्लाचे कॉन्सेन्ट्रेशन हे अपूर्णांकातील भाजक तर हायड्रोनिअम व कॉन्ज्युगेट आम्लारीच्या कॉन्सेन्ट्रेशनचा गुणाकार अपूर्णांकातील अंशात येतो.
जे आम्ल अधिक तीव्र असते त्याच्या Ka ची संख्या जास्त असते. त्याच्या मिश्रणात हायड्रोनिअम जास्त असतात कारण तीव्र आम्ल अधिक प्रोटोन देतात. Ka ही संख्या बऱ्याचदा खूप लहान अस्ल्याने तिला आकड्यांमध्ये मांडणे गैरसोयीचे होते. करते. म्हणून pKa ची संकल्पना वापरली जाते. pKa ची संख्या pKa = -log10Ka या समीकरणाने मिळते. pKa जितका कमी तितकी आम्लाची तीव्रता जास्त. अनेक पुस्तकांत आणि संदर्भग्रंथांत आम्लाच्या पाण्यामधील मिश्रणातील २५°C तापमानाला असणाऱ्या pKa या संख्या दिल्या असतात.
जे आम्ल अधिक तीव्र असते त्याच्या Ka ची संख्या जास्त असते. त्याच्या मिश्रणात हायड्रोनिअम जास्त असतात कारण तीव्र आम्ल अधिक प्रोटाॅन देतात. Ka ही संख्या बऱ्याचदा खूप लहान असल्याने तिला आकड्यांमध्ये मांडणे गैरसोयीचे होते. करते. म्हणून pKa ची संकल्पना वापरली जाते. pKa ची संख्या pKa = -log10Ka या समीकरणाने मिळते. pKa जितका कमी तितकी आम्लाची तीव्रता जास्त. अनेक पुस्तकांत आणि संदर्भग्रंथांत आम्लाच्या पाण्यामधील मिश्रणातील २५°C तापमानाला असणाऱ्या pKa या संख्या दिलेल्या असतात.
'''
'''
Nomenclature (आम्लाचे नामकरण)'''
Nomenclature (आम्लाचे नामकरण)'''
ओळ ४९: ओळ ४४:
क्लासिकल नामकरण पद्धतीत आम्लांची शास्त्रीय नावे त्यांच्या ॲनायन (anion) वरून ठेवण्यात यायची. त्या ॲनायनच्या पुढे लागलेले प्रत्यय काढून त्याच्या आधी एक नवीन प्रत्यय जोडण्यात येतो.. खालील तक्त्यात हे प्रत्यय दिले आहेत. उदाहरणार्थ HCl मध्ये chloride आयन असतो म्हणून त्याला hydrochloric acid असे म्हणतात. IUPAC नामकरणात त्या रेणूच्या नावाआधी aqueous जोडतात. उदाहरण म्हणजे HCl ला aqueous hydrogen chloride असे म्हणतात. ज्या आम्लांमध्ये फक्त हायड्रोजन आणि अजून एकच पदार्थाचा रेणू असतो त्याच्या नावाआधी ‘hydro’ लावतात.
क्लासिकल नामकरण पद्धतीत आम्लांची शास्त्रीय नावे त्यांच्या ॲनायन (anion) वरून ठेवण्यात यायची. त्या ॲनायनच्या पुढे लागलेले प्रत्यय काढून त्याच्या आधी एक नवीन प्रत्यय जोडण्यात येतो.. खालील तक्त्यात हे प्रत्यय दिले आहेत. उदाहरणार्थ HCl मध्ये chloride आयन असतो म्हणून त्याला hydrochloric acid असे म्हणतात. IUPAC नामकरणात त्या रेणूच्या नावाआधी aqueous जोडतात. उदाहरण म्हणजे HCl ला aqueous hydrogen chloride असे म्हणतात. ज्या आम्लांमध्ये फक्त हायड्रोजन आणि अजून एकच पदार्थाचा रेणू असतो त्याच्या नावाआधी ‘hydro’ लावतात.


क्लासिकल नामकरण:
क्लासिकल नामकरण :


ॲनायनच्या आधी असणारा प्रत्यय, ॲनायनच्या नंतर असणारा प्रत्यय, आम्लाच्या आधी असणारा प्रत्यय, आम्लाच्या नंतर असणारा प्रत्यय यांची उदाहरणे :
ॲनायनच्या आधी असणारा प्रत्यय, ॲनायनच्या नंतर असणारा प्रत्यय, आम्लाच्या आधी असणारा प्रत्यय, आम्लाच्या नंतर असणारा प्रत्यय यांची उदाहरणे :


per Ate per ic acid perchloric acid (HClO4)
per Ate per ic acid perchloric acid (HClO<sub>4</sub>)


Ate ic acid chloric acid (HClO3)
Ate ic acid chloric acid (HClO<sub>3</sub>)


Ite ous acid chlorous acid (HClO2)
Ite ous acid chlorous acid (HClO<sub>2</sub>)


Hypo Ite hypo ous acid hypochlorous acid (HClO)
Hypo Ite hypo ous acid hypochlorous acid (HClO)
ओळ ६५: ओळ ६०:
'''आम्लाची तीव्रता:'''
'''आम्लाची तीव्रता:'''


आम्लाची तीव्रता त्याच्या प्रोटाॅन देण्याच्या क्षमतेवर आवलंबून आहे. जे आम्ल पाण्यात पूर्णपणे आयनमध्ये विभाजित होते, म्हणजे एक मोल आम्ल, एक मोल हायड्रोजन आणि एक मोल कॉन्ज्युगेट आम्लारी देते, ते आम्ल तीव्र असते. ते पाण्यात विरघळले की पूर्णपणे विभाजित होते, आणि आम्लाच्या म्हणजे पूर्ण रेणूच्या स्वरूपात राहत नाही. जे आम्ल कमी तीव्र असते ते पूर्णपणे पाण्यात विरघळत नाही. त्याच्या मिश्रणात आम्ल आणि कॉन्जुगेट आम्लारी दोघांचे रेणू असतात. Hydrochloric acid (HCl), hydroiodic acid (HI), hydrobromic acid (HBr), perchloric acid (HClO4), nitric acid (HNO3) आणि sulfuric acid (H2SO4) ही काही तीव्र आम्लांची उदाहरण आहेत. ही आम्ल पाण्यात पूर्णपणे आयन मध्ये विभाजित होतात. आम्लाची प्रोटोन देण्याची क्षमता H आणि A हे अणू आम्लाच्या रेणूंमध्ये किती स्थिर राहतात यावर अवलंबून आहे. ही स्थिरता A च्या आकारावर अवलंबून आहे. पाण्यात किंवा मिश्रणात कॉन्ज्युगेट आम्लारी किती स्थिर आहे ह्यावर पण आम्लाची तीव्रता अवलंबून असते. Ka जितके जास्त किंवा pKa जितके कमी तितकी आम्लाची तीव्रता जास्त.
आम्लाची तीव्रता त्याच्या प्रोटाॅन देण्याच्या क्षमतेवर आवलंबून आहे. जे आम्ल पाण्यात पूर्णपणे आयनमध्ये विभाजित होते, म्हणजे एक मोल आम्ल, एक मोल हायड्रोजन आणि एक मोल कॉन्ज्युगेट आम्लारी देते, ते आम्ल तीव्र असते. ते पाण्यात विरघळले की पूर्णपणे विभाजित होते, आणि आम्लाच्या म्हणजे पूर्ण रेणूच्या स्वरूपात राहत नाही. जे आम्ल कमी तीव्र असते ते पूर्णपणे पाण्यात विरघळत नाही. त्याच्या मिश्रणात आम्ल आणि कॉन्जुगेट आम्लारी दोघांचे रेणू असतात. Hydrochloric acid (HCl), hydroiodic acid (HI), hydrobromic acid (HBr), perchloric acid (HClO<sub>4</sub>), nitric acid (HNO<sub>3</sub>) आणि sulfuric acid (H2SO<sub>4</sub>) ही काही तीव्र आम्लांची उदाहरण आहेत. ही आम्ल पाण्यात पूर्णपणे आयन मध्ये विभाजित होतात. आम्लाची प्रोटाॅन देण्याची क्षमता H आणि A हे अणू आम्लाच्या रेणूंमध्ये किती स्थिर राहतात यावर अवलंबून आहे. ही स्थिरता A च्या आकारावर अवलंबून आहे. पाण्यात किंवा मिश्रणात कॉन्ज्युगेट आम्लारी किती स्थिर आहे ह्यावर पण आम्लाची तीव्रता अवलंबून असते. Ka जितके जास्त किंवा pKa जितके कमी तितकी आम्लाची तीव्रता जास्त.


'''रासायनिक गुणधर्म:'''
'''रासायनिक गुणधर्म:'''
ओळ ७३: ओळ ६८:
ज्या आम्लांचा एक रेणू पाण्यात एकच हायड्रोनिअम आयन देतो त्या आम्लांना मोनोप्रोटिक आम्ल म्हणतात. खालचे समीकरण एक साधारण मोनोप्रोटिक आम्लाचे विभाजन दाखवते :
ज्या आम्लांचा एक रेणू पाण्यात एकच हायड्रोनिअम आयन देतो त्या आम्लांना मोनोप्रोटिक आम्ल म्हणतात. खालचे समीकरण एक साधारण मोनोप्रोटिक आम्लाचे विभाजन दाखवते :


HA(aq) + H2O(l) H3O+(aq) + A−(aq)
HA(aq) + H<sub>2</sub>O(l) H<sub>3</sub>O+(aq) + A−(aq)


Ka(aq) म्हणजे aqueous किंवा पाण्यातील विलयन. )
Ka(aq) म्हणजे aqueous किंवा पाण्यातील विलयन. )


Hydrochloric acid (HCl) and nitric acid (HNO3) ही मोनोप्रोटिक आम्लाची सामान्य उदाहरणे आहेत. ऑर्गॉनिक आम्लांमध्ये एक कार्बोक्सिलिक (carboxyilic-COOH) ग्रुप असते. म्हणून त्यांना मोनोकार्बोक्सिलिक (monocarboxylic) आम्ल असे म्हणतात. Formic acid (HCOOH), acetic acid (CH3COOH) आणि benzoic acid (C6H5COOH) ही ऑर्गॅनिक आम्लांची उदाहरणे आहेत.
Hydrochloric acid (HCl) and Nitric acid (HNO<sub>3</sub>) ही मोनोप्रोटिक आम्लाची सामान्य उदाहरणे आहेत. ऑरगॅनिक आम्लांमध्ये एक कारबाॅक्सिलिक (carboxyilic-COOH) ग्रुप असतो. म्हणून त्यांना मोनोकारबाॅक्सिलिक (monocarboxylic) आम्ले असे म्हणतात. Formic acid (HCOOH), acetic acid (CH<sub>3</sub>COOH) आणि benzoic acid (C<sub>6</sub>H<sub>5</sub>COOH) ही ऑरगॅनिक आम्लांची उदाहरणे आहेत.


''पॉलिप्रोटिक आम्ल-''
''पॉलिप्रोटिक आम्ल-''


जी आम्ले पाण्यात विरघळल्यावर एका पेक्षा जास्त हायड्रोनिअम आयन देतात त्यांना पॉलिप्रोटिक आम्ल म्हणतात. मोनोप्रोटिक आम्ल एकच हायड्रोनिअम आयन देतात पण पॉलिप्रोटिक आम्ल एकापेक्षा जास्त देतात. हायड्रोननिअम आयनच्या संख्येवरून पॉलिप्रोटिक आम्ले विभागली गेली आहेत. दोन हायड्रोनिअम आयन देणाऱ्या पॉलिप्रोटिक आम्लांना डायप्रोटिक म्हणतात (diprotic – di म्हणजे दोन) आणि जी तीन हायड्रोनिअम आयन देतात त्यांना ट्रायप्रोटिक म्हणतात (triprotic – tri म्हणजे तीन).
जी आम्ले पाण्यात विरघळल्यावर एका क्षा जास्त हायड्रोनिअम आयन देतात त्यांना पॉलिप्रोटिक आम्ल म्हणतात. मोनोप्रोटिक आम्ल एकच हायड्रोनिअम आयन देतात पण पॉलिप्रोटिक आम्ल एकापेक्षा जास्त देतात. हायड्रोननिअम आयनच्या संख्येवरून पॉलिप्रोटिक आम्ले विभागली गेली आहेत. दोन हायड्रोनिअम आयन देणाऱ्या पॉलिप्रोटिक आम्लांना डायप्रोटिक म्हणतात (diprotic – di म्हणजे दोन) आणि जी तीन हायड्रोनिअम आयन देतात त्यांना ट्रायप्रोटिक म्हणतात (triprotic – tri म्हणजे तीन).


''डायप्रोटिक आम्ल-''
''डायप्रोटिक आम्ल-''


(H2A) दोनदा आयन मध्ये विभाजित होतात. दोन्ही प्रक्रियेचे कॉन्स्टंट आहेत: Ka1 आणि Ka2.
(H<sub>2</sub>A) दोनदा आयनमध्ये विभाजित होतात. दोन्ही प्रक्रियेचे कॉन्स्टंट आहेत: Ka1 आणि Ka 2.


H2A(aq) + H2O(l) H3O+(aq) + HA−(aq) Ka1
H<sub>2</sub>A(aq) + H<sub>2</sub>O(l) H<sub>3</sub>O+(aq) + HA−(aq) Ka1


HA−(aq) + H2O(l) H3O+(aq) + A2−(aq) Ka2
HA−(aq) + H<sub>2</sub>O(l) H<sub>3</sub>O+(aq) + A<sub>2</sub>−(aq) Ka 2


पहिल्या प्रक्रियेत विभाजन जास्त असते. म्हणून पहिल्या प्रक्रियेचा कॉन्स्टंट जास्त असतो : Ka1 > Ka2. उदाहरणासाठी सल्फ्युरिक आम्ल (H2SO4) एक हायड्रोजन आयन देऊन बायसल्फेट आयन (HSO4−), मध्ये रुपांतरीत होतं; या प्रक्रियेचा कॉन्स्टंट खूप जास्त आहे म्हणून सल्फ्यूरिक आम्ल एक तीव्र आम्ल आहे. बायसल्फेट आयन अजून एक हायड्रोजन आयन देऊन सल्फेट आयन (SO42-) मध्ये रुपांतरित होत. या प्रक्रियेचा कॉन्स्टंट इतका जास्त नसतो, पण Ka1 खूप जास्त असल्याने सल्फ्यूरिक आम्ल हे एक तीव्र आम्ल आहे. असेच कार्बोनिक आम्ल (H2CO3) एक उदाहरण आहे. ते देखील एक हायड्रोनिअम आयन देऊन बायकार्बोनेट आयन (HCO3−) मध्ये रूपांतरित होते, आणि त्यानंतर अजून एक हायड्रोनिअम आयन देऊन कार्बोनेट आयन (CO32-) मध्ये. पण या प्रक्रियेत दोन्ही Ka1 आणि Ka2 कमी आहेत; म्हणून कार्बोनिक आम्लाची तीव्रता कमी आहे.
पहिल्या प्रक्रियेत विभाजन जास्त असते. म्हणून पहिल्या प्रक्रियेचा कॉन्स्टंट जास्त असतो : Ka1 > Ka2. उदाहरणासाठी सल्फ्युरिक आम्ल (H2SO<sub>4</sub>) एक हायड्रोजन आयन देऊन बायसल्फेट आयन (HSO<sub>4</sub>−), मध्ये रूपांतरित होते; या प्रक्रियेचा कॉन्स्टंट खूप जास्त आहे म्हणून सल्फ्यूरिक आम्ल एक तीव्र आम्ल आहे. बायसल्फेट आयन अजून एक हायड्रोजन आयन देऊन सल्फेट आयन (SO<sub>4</sub>)<sub>2</sub>-) मध्ये रूपांतरित होत. या प्रक्रियेचा कॉन्स्टंट इतका जास्त नसतो, पण Ka1 खूप जास्त असल्याने सल्फ्यूरिक आम्ल हे एक तीव्र आम्ल आहे. असेच कार्बोनिक आम्ल (H<sub>2</sub>CO<sub>3</sub>) एक उदाहरण आहे. ते देखील एक हायड्रोनिअम आयन देऊन बायकार्बोनेट आयन (HCO<sub>3</sub>−) मध्ये रूपांतरित होते, आणि त्यानंतर अजून एक हायड्रोनिअम आयन देऊन कार्बोनेट आयन- (CO<sub>3</sub>)<sub>2</sub>-मध्ये. पण या प्रक्रियेत दोन्ही Ka1 आणि Ka2 कमी आहेत; म्हणून कारबाॅनिक आम्लाची तीव्रता कमी आहे.


ट्रायप्रोटिक आम्ल एक, दोन, किंवा तीन हायड्रोनिअम आयन देऊ शकते आणि त्याचे तीन कॉन्स्टंट आहेत, ज्यात Ka1 > Ka2 > Ka3.
ट्रायप्रोटिक आम्ल एक, दोन, किंवा तीन हायड्रोनिअम आयन देऊ शकते आणि त्याचे तीन कॉन्स्टंट आहेत, ज्यात Ka1 > Ka2 > Ka3.


H3A(aq) + H2O(l) H3O+(aq) + H2A−(aq) Ka1
H<sub>3</sub>A(aq) + H<sub>2</sub>O(l) H<sub>3</sub>O+(aq) + H<sub>2</sub>A−(aq) Ka1


H2A−(aq) + H2O(l) H3O+(aq) + HA2−(aq) Ka2
H<sub>2</sub>A−(aq) + H<sub>2</sub>O(l) H<sub>3</sub>O+(aq) + HA<sub>2</sub>−(aq) Ka 2


HA2−(aq) + H2O(l) H3O+(aq) + A3−(aq) Ka3
HA<sub>2</sub>−(aq) + H<sub>2</sub>O(l) H<sub>3</sub>O+(aq) + A<sub>3</sub>−(aq) Ka 3


ऑर्थोफाॅस्फोरिक आम्ल (H3PO4) हे एक ट्रायप्रोटिक आम्लाचे उदाहरण आहे. ज्याला फोस्फाॅरिक आम्ल असे पण म्हणतात. ते हायड्रोनिअम आयन देऊन H2PO4− आयन, मग HPO42- आणि शेवटी PO43- आयन मध्ये रुपांतरित होते. सायट्रिक आम्ल हे एक ऑरगॅनिक ट्रायप्रोटिक आम्लाचे उदाहरण आहे. ते तीन हायड्रोजन आम्ले देऊन सायट्रेट आम्लात रूपांतरित होते. मात्र तिन्ही आम्ले सम प्रमाणात दिली जात नाहीत, जसा कॉन्ज्युगेट बेसवर चार्ज वाढतो तशी त्याची हायड्रोनिअम द्यायची क्षमता कमी होते. Ka ची संख्या प्रत्येक विभाजनाबरोबर कमी होते.
ऑर्थोफाॅस्फाॅरिक आम्ल (H<sub>3</sub>PO<sub>4</sub>) हे एक ट्रायप्रोटिक आम्लाचे उदाहरण आहे. त्याला फाॅस्फाॅरिक आम्ल म्हणतात. ते हायड्रोनिअम आयन देऊन H<sub>2</sub>PO<sub>4</sub>− आयन, मग H(PO<sub>4</sub>)<sub>2</sub>- आणि शेवटी (PO<sub>4</sub>)<sub>3</sub>- आयनमध्ये रूपांतरित होते. सायट्रिक आम्ल हे एक ऑरगॅनिक ट्रायप्रोटिक आम्लाचे उदाहरण आहे. ते तीन हायड्रोजन आम्ले देऊन सायट्रेट आम्लात रूपांतरित होते. मात्र तिन्ही आम्ले सम प्रमाणात दिली जात नाहीत, जसा कॉन्ज्युगेट बेसवर चार्ज वाढतो तशी त्याची हायड्रोनिअम द्यायची क्षमता कमी होते. Ka ची संख्या प्रत्येक विभाजनाबरोबर कमी होते.


जरी प्रत्येक विभाजनाबरोबर हायड्रोनिअमची संख्या कमी होते तरी मिश्रणात सगळे कॉन्जुगेट आम्लारी असतात. प्रत्येक बेसच कॉन्सनट्रेशन α (अल्फा) दर्शावत. उदाहरासाठी H2A, HA-, आणि A2- हे तीन आयन एका ट्रायप्रोटिक आम्लाच्या मिश्रणात असतात. जर मिश्रणाचे पी.एच दिले असेल तर प्रत्येक कॉन्ज्युगेट आम्लासाठी α शोधता येईल.
जरी प्रत्येक विभाजनाबरोबर हायड्रोनिअमची संख्या कमी होते तरी मिश्रणात सगळे कॉन्जुगेट आम्लारी असतात. प्रत्येक बेसच कॉन्सनट्रेशन α (अल्फा) दर्शावत. उदाहरासाठी H<sub>2</sub>A, HA-, आणि A<sub>2</sub>- हे तीन आयन एका ट्रायप्रोटिक आम्लाच्या मिश्रणात असतात. जर मिश्रणाचे पी.एच दिले असेल तर प्रत्येक कॉन्ज्युगेट आम्लासाठी α शोधता येते.
वरील समीकरणांवरून कुठल्याहि n-प्रोटिक आम्लासाठी i विभाजनानंतर असणाऱ्या कॉन्ज्युगेट आम्लारीचे कॉन्सेन्ट्रेशन काढता येईल :
वरील समीकरणांवरून कुठल्याहि n-प्रोटिक आम्लासाठी i विभाजनानंतर असणाऱ्या कॉन्ज्युगेट आम्लारीचे कॉन्सेन्ट्रेशन काढता येते :
यात K0 = 1 आहे आणि बाकी सगळे K हे आम्लाच्या विभाजनप्रक्रियेचे कॉन्स्टंट आहेत.
यात K 0 = 1 आहे आणि बाकी सगळे K हे आम्लाच्या विभाजनप्रक्रियेचे कॉन्स्टंट आहेत.
'''
'''
आम्ल-आम्लारी प्रक्रिया (न्युट्रलायझेशन)'''
आम्ल-आम्लारी प्रक्रिया (न्युट्रलायझेशन)'''
ओळ ११४: ओळ १०९:
न्युट्रलायलेशन म्हणजे आम्ल-आम्लारीमध्ये होणारी प्रक्रिया : या प्रक्रियेमुळे एक क्षार आणि न्युट्रलाइझ्ड आम्लारी बनते. उदाहरणासाठी hydrogen chloride हे आम्ल आणि sodium hydroxide हा आम्लारी एकत्र केल्यावर sodium chloride हा क्षार आणि पाणी तयार होते.
न्युट्रलायलेशन म्हणजे आम्ल-आम्लारीमध्ये होणारी प्रक्रिया : या प्रक्रियेमुळे एक क्षार आणि न्युट्रलाइझ्ड आम्लारी बनते. उदाहरणासाठी hydrogen chloride हे आम्ल आणि sodium hydroxide हा आम्लारी एकत्र केल्यावर sodium chloride हा क्षार आणि पाणी तयार होते.


HCl(aq) + NaOH(aq) → H2O(l) + NaCl(aq)
HCl(aq) + NaOH(aq) → H<sub>2</sub>O(l) + NaCl(aq)


टायट्रेशनच्या मागचा शास्त्र म्हणजे न्युट्रलायझेशन. टायट्रेशनमध्ये इक्विव्हॅलन्स पॉइंट काढतात. ज्या क्षणी आम्ल आम्लारी प्रक्रिया पूर्ण होते आणि प्रक्रियेसाठी लागणाऱ्या आम्ल-आम्लारी यांच्या संख्या बरोबर असतात. आम्ल-आम्लारी प्रक्रियेनंतर पी.एच. संख्या ७ असेल हा एक गैरसमज आहे. मिश्रणाची संख्या आम्ल आणि अम्लारींच्या गुणधर्म किंवा तीव्रतेवर अवलंबून आहे. जर आम्लारी आम्लापेक्षा कमी तीव्र असेल तर मिश्रण आम्लाचे गुणधर्म दाखवते. उदाहरणासाठी ammonia या आम्लारीची तीव्रता hydrogen chloride या आम्लापेक्षा कमी आहे म्हणून ammonium chloride ह्या क्षाराचे बनणारे मिश्रण आम्लाचे गुणधर्म दाखवते. तसेच जर आम्लारी अधिक तीव्र असेल तर मिश्रण आम्लारीचे गुणधर्म दाखवतात.
टायट्रेशनच्या मागचे शास्त्र म्हणजे न्युट्रलायझेशन. टायट्रेशनमध्ये इक्विव्हॅलन्स पॉइंट काढतात. ज्या क्षणी आम्ल आम्लारी प्रक्रिया पूर्ण होते, त्याक्षणी प्रक्रियेसाठी लागणाऱ्या आम्ल-आम्लारी यांच्या संख्या बरोबर असतात. आम्ल-आम्लारी प्रक्रियेनंतर पी.एच. संख्या ७ असली पाहिजे हा एक गैरसमज आहे. मिश्रणाची संख्या आम्ल आणि अम्लारींच्या गुणधर्म किंवा तीव्रतेवर अवलंबून आहे. जर आम्लारी आम्लापेक्षा कमी तीव्र असेल तर मिश्रण आम्लाचे गुणधर्म दाखवते. उदाहरणासाठी ammonia या आम्लारीची तीव्रता hydrogen chloride या आम्लापेक्षा कमी आहे म्हणून ammonium chloride ह्या क्षाराचे बनणारे मिश्रण आम्लाचे गुणधर्म दाखवते. तसेच जर आम्लारी अधिक तीव्र असेल तर मिश्रण आम्लारीचे गुणधर्म दाखवतात.


Sodium hydroxide ह्या तीव्र आम्लारी बरोबर hydrogen fluorideच्या प्रक्रियेने sodium fluoride ह्या क्षाराचे मिश्रण बनते. ते आम्लारीचे गुणधर्म दाखवते.
Sodium hydroxide ह्या तीव्र आम्लारी बरोबर hydrogen fluorideच्या प्रक्रियेने sodium fluoride ह्या क्षाराचे मिश्रण बनते. ते आम्लारीचे गुणधर्म दाखवते.
ओळ १२४: ओळ ११९:
आम्लाचे उपयोग'''
आम्लाचे उपयोग'''


आम्लांचे बरेच उपयोग आहेत. आम्ल धातूंवरील गंज काढायला वापरतात. या प्रक्रियेला pickling (पिक्लिंग) असे म्हणतात. ते बॅट्री मध्ये वापरतात. उदाहरणासाठी सल्फ्युरिक आम्ल गाड्यांच्या बॅट्री मध्ये वापरला जाटो. धातूंच्या शुधीकरणात सल्फ्युरिक अम्लासारखी तीव्र आम्ल वापरली जातात. सल्फ्युरिक आम्लाच्या फोस्फेट (phosphate) धातूंबरोबरच्या प्रक्रियेने फोस्फाॅरिक आम्ल बनते, ते शेतातील खतांमध्ये वापरले जाते. झिंक ऑक्साईडला सल्फ्यूरिक आम्लात टाकून शुद्धीकरण केले की जस्त हा धातू मिळतो.
आम्लांचे बरेच उपयोग आहेत. आम्ल धातूंवरील गंज काढायला वापरतात. या प्रक्रियेला pickling (पिक्लिंग) असे म्हणतात. ते बॅटरीमध्ये वापरतात. उदाहरणासाठी सल्फ्युरिक आम्ल मोटारगाड्यांच्या बॅटरीमध्ये वापरतात. धातूंच्या शुद्धीकरणात सल्फ्युरिक आम्लासारखी तीव्र आम्ले वापरली जातात. सल्फ्युरिक आम्लाच्या फाॅस्फेट (phosphate) धातूंबरोबरच्या प्रक्रियेने फाॅस्फाॅरिक आम्ल बनते, ते शेतातील खतांसाठी वापरतात. जाते. झिंक ऑक्साईडला सल्फ्यूरिक आम्लात टाकून शुद्धीकरण केले की जस्त हा धातू मिळतो.

रासायनिक कारखान्यांमध्ये आम्ल-आम्लारी प्रक्रियेने क्षार बनवण्यात येते. अमोनिअम नायट्रेट हे खत बनवण्यासाठी अमोनिअम हायड्रोक्साईड आणि नायट्रिक आम्ल वापरली जातात. कार्बोक्सिलिक आम्ल आणि अल्कोहोलने ॲस्टर बनवतात.

खाद्यपदार्थात त्यांची चव वाढवायला व ते टिकावेत म्हणूनदेखील आम्ले घालतात. उदाहरणादाखल कोकाकोलामध्ये फाॅस्फाॅरिक आम्ल टाकतात. ॲसेटिक आम्ल म्हणजे व्हिनेगर, हे सामान्य जीवनात वापरले जाते. कार्बोनिक आम्ल कोकाकोला आणि सोड्यामध्ये टाकले जाते. सायट्रिक आम्ल हे पदार्थ नासावा म्हणून खाद्य पदार्थांमध्ये टाकतात.

सामान्य खाद्यपदार्थांमध्ये टार्टारिक आम्ल असते. टार्टारिक आम्ल हा चिंचेचा आणि कैरीचा एक घटक आहे. सायट्रिक आम्ल हे लिंबू, संत्री अशा आंबट फळांमध्ये असते. टाॅमॅटो आणि पालक या भाज्यांमध्ये ऑक्झॅलिक आम्ल असते.


ॲस्कॉर्बिक आम्ल हे व्हिटॅमिन C आहे. ते लिंबू, संत्री, पेरू अश्या आंबट फळांमध्ये आढळते आणि शरीरासाठी आवश्यक असते.
रासायनिक कारखान्यांमध्ये आम्ल-आम्लारी प्रक्रियेने क्षार बनवण्यात येते. अमोनिअम नायट्रेट हे खत बनवण्यासाठी अमोनिअम हायड्रोक्साइड आणि नाईट्रिक आम्ल वापरले जातात. कार्बोक्सिलिक आम्ल आणि अल्कोहोलने ॲस्टर बनवतात.


ॲसेटाईल सॅलिसिलिक आम्ल किंवा ॲस्पिरीन हे एक शारीरिक वेदना कमी करायला किंवा तापावर औषध म्हणून वापरले जाते.
खाद्यपदार्थात त्यांची चव वाढवायला व ते टिकावेत म्हणूनदेखील आम्ल घालतात. उदाहरणासाठी कोला मध्ये फोस्फाॅरिक आम्ल टाकतात. ॲसेटिक आम्ल म्हणजे विनेगर जे सामान्य जीवनात वापरले जाते. कार्बोनिक आम्ल कोला आणि सोड्यामध्ये टाकले जाते. सायट्रिक आम्ल हे पदार्थ नासावा म्हणून खाद्य पदार्थांमध्ये टाकण्यात येते.
सामान्य खाद्यपदार्थांमध्ये तार्तारिक आम्ल असते. जसेकि चिंच आणि कैरीचा तार्तारिक आम्ल हा एक घटक आहे. सायट्रिक आम्ल हे लिंबू, संत्री अशा आंबट फळांमध्ये असते. तमात आणि पालक या भाज्यांमध्ये ऑक्झालिक आम्ल असते.


आपल्या शरीरात देखील आम्ले मोठी भूमिका निभावतात. हायड्रोक्लोरिक आम्ल हे पचनात मदत करते. हे आम्ल आपल्या पोटात असते व मोठ्या रेणूंना छोट्या भागांमध्ये विभाजित करायला साहाय्य करते. ॲमिनो आम्ल हे प्रोटीन निर्मितीत लागते. प्रोटीन शरीराच्या वाढीसाठी व दुरुस्तीसाठी आवश्यक असतात. तसेच फॅटी आम्ले पण शरीराच्या वाढीसाठी व दुरुस्तीसाठी आवश्यक असतात. न्युक्लिक आम्ल DNA, RNA यांच्या निर्मितीत लागतात. DNA आणि RNA आपले गुणधर्म ठरवतात, मुलाकडे पालकांचे गुणधर्म या जीन्समुळे जातात. कार्बाॅनिक आम्ल शरीराची पी.एच. संख्या स्थिर ठेवण्यात साहाय्य करतो.
ॲस्कॉर्बिक आम्ल हे विटामिन C आहे जे लिंबू, संत्री, पेरू अश्या आंबट फळांमध्ये आढळते आणि शरीरासाठी आवश्यक असते.


आम्लांचे व आम्लारींचे वर्गीकरण :-
ॲसेटाइलसॅलिसिलिक आम्ल किंवा ॲस्पिरीन हे एक शारीरिक वेदना कमी करायला किंवा तापावर औषध म्हणून वापरले जाते.


तीव्र व सौम्य आम्ल, आम्लारी आणि अल्क(ली)
आपल्या शरीरात देखील आम्ल मोठी भूमिका निभावतात. हायड्रोक्लोरिक आम्ल हे पचनात मदत करते. हे आम्ल आपल्या पोटात असते व मोठ्या रेणूंना छोट्या भागांमध्ये विभाजित करायला साहाय्य करते. ॲमिनो आम्ल हे प्रोटीन निर्मितीत लागते. प्रोटीन शरीराच्या वाढीसाठी व दुरुस्तीसाठी आवश्यक असतात. तसेच फॅटी आम्ल पण शरीराच्या वाढीसाठी व दुरुस्तीसाठी आवश्यक असतात. न्युक्लिक आम्ल DNA, RNA यांच्या निर्मितीत लागतात. DNA आणि RNA आपले गुणधर्म ठरवतात, मुलाकडे पालकांचे गुणधर्म या जीन्सने जातात. कार्बोनिक आम्ल शरीराची पी.एच. संख्या स्थिर ठेवण्यात साहाय्य करतो.


आम्ल व आम्लारींच्या पाण्यातील द्रावणांमधे त्यांचे विचरण किती प्रमाणात होते त्यावरून त्यांचे वर्गीकरण तीव्र व सौम्य या दोन प्रकारात करतात.
आम्ल व आम्लारीनंचे वर्गीकरण


१)तीव्र आम्ल (strong acid) : तीव्र आम्ल पाण्यात विरघळले असता त्याचे विचरण जवळजवळ पूर्ण होते व त्यांच्या जलीय द्रावणात H+ व संबंधित आम्लाचे आम्लधर्मी मूलक हे आयनच प्रामुख्याने असतात.
तीव्र व सौम्य आम्ल ,आम्लारी आणी अल्क


उदाहरणार्थ :  HCl, H<sub>2</sub>SO<sub>4</sub>, HNO<sub>3</sub>.
आम्ल व आम्लारींच्या जलीय द्रावनांमधे त्यांचे विचरण कीती प्रमाणात होते त्यावरून त्यांचे वर्गीकरण तीव्र व सौम्य या दोन प्रकारात करतात.


)तीव्र आम्ल(strong acid):तीव्र आम्ल पाण्यात विरघळले असता त्यांचे विचरण जवळजवळ पुर्ण होते व त्यांच्या ज्वलिय द्रावनात H+ व संबंधीत आम्लाचे आम्लधर्मी मूलक हे आयनच प्रामुख्याने असतात.
)सौम्य आम्ल (Weak acids ) : सौम्य आम्ल पाण्यात विरघळले असता त्याचे विचरण पूर्ण होत नाही व त्यांच्या जलीय द्रावणात थोड्या प्रमाणात H+ व संबधित आम्लाचे आम्लधर्मी मूलक व आयनांच्या बरोबर विचरण न झालेले आम्लाचे रेणू मोठ्या प्रमाणात असतात.


उदाहरणार्थ:  HCl,H2SO4,HNO3.
उदाहरणार्थ: CH<sub>3</sub>COOH,H<sub>2</sub>CO<sub>3</sub>.


)सौम्य आम्ल (Waek acids ): सौम्य आम्ल पाण्यात विरघळले असता त्यांचे विचरण पुर्न होत नाही व त्यांच्या ज्वलिय द्रावनात थोड्या प्रमाणात H+संबधीत आम्लाचे आम्लधर्मी मूलक या आयनांच्या बरोबर विचरण न झालेले आम्लाचे रेणू मोठ्या प्रमाणात असतात.
)तीव्र आम्लारी (Strong base) : तीव्र आम्लारी पाण्यात विरघळले असता त्यांचे विचरण पूर्ण होते व त्यांच्या जलीय द्रावणात OH-संबंधित आम्लाचे आम्लधर्मी मूलक हे आयनच प्रामुख्याने असतात.


उदाहनार्थ :NaOH, KOH, Na<sub>2</sub>O.
उदाहरणार्थ: CH3COOH,H2CO3.


)तीव्र आम्लारी(Strong base): तीव्र आम्लारी पाण्यात विरघळले असता त्यांचे विचरण पूर्ण होतेत्यांच्या ज्वलिय द्रावणात OH- व संबंधित आम्लाचे आम्लधर्मी मूलक हे आयनच प्रामुख्याने असतात.
)सौम्य आम्लारी (weak base) : सौम्य आम्लारी पाण्यात विरघळले असता त्यांचे विचरण पूर्ण होत नाहीत्या जलीय द्रावणात कमी प्रमाणातील  OH- व संबंधiत आम्लारिधर्मी मूलकाबरोबर विचरण झालेले आम्लारींचे रेणू मोठ्या प्रमाणात असतात.


उदाहरणार्थ : NH<sub>4</sub>OH
उदाहनार्थ:NaOH,KOH,Na2O.


अल्क (alkali ): जे आम्लारी पाण्यात मोठ्या प्रमाणात विद्राव्य असतात त्यांना अल्क म्हणतात.
४)सौम्य आम्लारी( waek base): सौम्य आम्लारी पाण्यात विरघळले असता त्यांचे विचरण पूर्ण होत नाही व त्या ज्वलिय द्रावनात कमी प्रमाणातिल  OH- व संबंधीत आम्लरिधर्मी मुलकाबरोबर विचरण न झालेले आम्लारींचे रेणू मोठ्या प्रमाणात असतात.


उदाहरणार्थ: NaOH, KOH  व NH<sub>3</sub> यापैकी NaOH व KOH हे तीव्र अल्क आहेत व NH<sub>3</sub> हा सौम्य अल्क आहे.
उदाहरणार्थ: NH4OH


अल्क(alkali): जे आम्लारी पाण्यात मोठ्या प्रमाणात विद्राव्य असतात त्याना अल्क म्हणतात.


उदाहरणार्थ: NaOH, KOH  व NH3 यापैकी NaOH व KOH हे तीव्र अल्क आहेत व NH3 हा सौम्य अल्क आहे.
[[वर्ग:रसायनशास्त्र]]
[[वर्ग:रसायनशास्त्र]]

२३:४१, ८ जानेवारी २०२० ची आवृत्ती

जे आम्लारी (अल्कली) पदार्थांबरोबर रासायनिक प्रक्रियेत भाग घेतात, त्यांना आम्ल पदार्थ म्हणतात. आंबट चव आणि calcium सारख्या धातूंबरोबर व sodium carbonate सारख्या आम्लारी पदार्थांबरोबर रासायनिक प्रक्रियेत भाग घेणे हे आम्ल पदार्थांचे मुख्य गुणधर्म आहेत. पाण्याचे पी.एच. मूल्य ७ असते. आम्ल पदार्थांचे पी.एच मूल्य ७ पेक्षा कमी असते. पी.एच. मूल्य जितके कमी तितके त्याचे गुणधर्म तीव्र होतात .उदा.सल्फ्युरिक, नायट्रिक, हायड्रोक्लोरिक आणि फॉस्फोरिक आम्ल, कार्बोक्झिलिक आम्ल, सल्फाॅनिक आम्ल इत्यादी.

Acetic acid (vinegar मध्ये वापरतात), Sulphuric acid (मोटारगाड्यांच्या battery मध्ये वापर) व tartaric acid (Baking मध्ये वापर) ही व्यवहारात वापरण्यात येणाऱ्या आम्लांची उदाहरणे आहेत. या उदाहरणांवरून दिसून येते की आम्ल हे मिश्रण असू शकते आणि घन किंवा द्रव पदार्थपण असू शकतो.

Hydrochloric acid हे वायुरूपात असून, पाण्यात विरघळल्यावर आम्लाचे गुणधर्म दर्शवते. तीव्र आम्ल पदार्थ हे धातूंवर गंज चढवतात; पण याला carbonic acid आणि boric acid असे अपवाद आहेत.

आम्ल पदार्थांच्या तीन व्याख्या आहेत: Arrhenius व्याख्या, Bronsted-Lowry वाख्या आणि Lewis व्याख्या. Arrhenius व्याख्येनुसार जे पदार्थ जल मिश्रणात hydronium (H+) विद्युतभारित कणांचे प्रमाण वाढवतात त्यांना आम्ल म्हणतात. Bronsted-Lowry च्या व्याख्येनुसार प्रोटॉन देणारे पदार्थ हे आम्ल पदार्थ असतात. व्यवहारात आढळणारी आम्ले ही जल मिश्रित किंवा पाण्यात विरघळणारी असतात. म्हणून या दोन्ही व्याख्या एकमेकांना पूरक आहेत. आम्ल पदार्थात hydronium (H+) विद्युतभारित कण ७ मोल्स/लिटरपेक्षा कमी असतात. आम्लाच्या कॉन्सन्ट्रेशनची संख्या ऋण असते. म्हणून आम्ल पदार्थांचे पी.एच. मूल्य ७ पेक्षा कमी असते.

रसायन शास्त्रात Lewis व्याख्या प्रचलित आहेत. यानुसार Lewis आम्ल म्हणजे जी विद्युत-परमाणू स्वीकारतात ती.. ह्याचे उदाहरण म्हणजे धातूंचे कॅटायन, boron trifluoride व aluminium trichloride सारख्या विद्युत-परमाणूंची कमतरता असणारे रेणू. तीनही व्याख्यांनुसार hydronium विद्युतभारित कण हे आम्ल पदार्थ आहेत. पण Bronsted-Lowry आम्ल असणारी अल्कोहोल व अमीन ही Lewis आम्लारी आहेत. कारण या रेणूंमध्ये oxygen व nitrogen या अणूंवर जी लोन पेअर (दोन्हीं अणूंमध्ये न विभागलेली विद्युतपरमाणूंची जोडी) असते, ती देऊन ते आम्लारी पदार्थांचे गुणधर्म दाखवतात.

अर्हेनियस आम्ल

स्वीडिश रसायनतज्ज्ञ Arrhenius याने १८८४ साली, hydrogen आणि आम्ल गुणधर्मांमध्ये असणारा सबंध मांडला. पाण्यात विरघळल्यावर hydrogenच्या विद्युतभारित परमाणूंचे कॉन्सेन्ट्रेशन वाढवणाऱ्या पदार्थाला Lewis आम्ल म्हणता येईल. पाण्याच्या रेणूंचे रूपांतर hydronium(H+) आणि hydroxide (OH-) विद्युतभारित कणांमध्ये होते. याच्यावरूनच आम्लाची व्याख्या आली आहे. H2O(l) + H2O(l) H3O+(aq) + OH−(aq)

पाण्यामध्ये पुष्कळअंशी रेणू अविभाजित असतात; पण खूप कमी रेणू सतत विद्युतभारित कणांत रूपांतरित होत असतात. पाणी न आम्ल आहे न आम्लारी; कारण पाण्यात hydronium व hydroxide विद्युतभारित कण नेहमी समप्रमाणात असतात. ते पाण्यात विरघळल्यावर hydroxide चे प्रमाण वाढवतात ते Arrhenius आम्लारी पदार्थ.. बरेचसे रसायन तज्‍ज्ञ hydrogen विद्युतभारित कण या शब्दाचा प्रयोग करतात, पण पाण्यामध्ये hydrogenचे न्युक्लिअस आढळत नाहीत. ते hydronium (H3O+) विद्युतभारित कणाच्या रूपात आढळतात.

Brønsted-Lowry आम्ल

Arrhenius व्याख्येचा बऱ्याच ठिकाणी वापर होता असला तरी त्याचा प्रयोग मर्यादित आहे. १९२३ साली, जॉहॅन्स निकोलस ब्रॉन्स्टेड (Johannes Nicholas Brønsted) व थॉमस मार्टिन लोअरी (Thomas Martin Lowry) या रसायन तज्ज्ञांनी आम्ल व अम्लारीमध्ये होणाऱ्या प्रोटाॅनच्या अदलाबदलीचा शोध लावला. Brønsted-Lowry आम्ल म्हणजे जे पदार्थ Brønsted अम्लारीला प्रोटाॅन दान करतात. अर्हेनिअस व्याख्येपेक्षा Brønsted व्याख्या अधिक परिपूर्ण आहे. ॲसेटिक ॲसिडमध्ये होणारा रासायनिक बदल खाली दिला आहे:


वरील प्रक्रियेच्या पहिल्या भागात ॲसेटिक ॲसिड हे आम्ल आहे हे सिद्ध करतात. पहिल्या भागात जळत विरघळल्यावर hydronium देऊन ते अर्हेनिअस आम्ल सारखे वागतात, तर जलाच्या रेणूला प्रोटाॅन देऊन ते Brønsted आम्लासारखे वागतात. पुढच्या भागात Brønsted आम्लासारखे ते आम्लारीला प्रोटाॅन देते पण hydronium देत नसल्यामुळे ते अर्हेनिअस आम्लाच्या व्याख्येस पात्र ठरत नाही. अर्हेनिअस व्याख्या फक्त विद्युत कणांत विभाजित होणाऱ्या रेणूंच्या आम्ल गुणधर्माचे समाधानकारक स्पष्टीकरण देते, पण Brønsted व्याख्या इतर रेणूंच्या आम्ल गुणधर्माचे स्पष्टीकरण देते. विविध स्थितींमध्ये Hydrogen chloride आणि ammonia एकत्र केल्यावर ammonium chloride हे क्षार बनते. खालील रासायनिक प्रक्रिया अर्हेनिअस व्याख्येच्या मर्यादा दर्शवतात :

1. H3O+(aq) + Cl−(aq) + NH3 → Cl−(aq) + NH4+(aq) 2. HCl (benzene) + NH3 (benzene) → NH4Cl(s) 3. HCl(g) + NH3(g) → NH4Cl(s)

पहिल्या भागात म्हणजे पाण्यात जेव्हा ही प्रक्रिया होते तेव्हा HCl अर्हेनिअस आम्लासारखे हायड्रोनिअम देते. पण पुढील दोन भागात हायड्रोनिअम देत नसले तरी प्रोटाॅनची बदली होते. म्हणून बेन्झीनमध्ये होणारी प्रक्रिया किंवा वायू स्थितीत असताना होणारी प्रक्रिया ही आम्ल आणि आम्लारी मध्ये होणारी प्रक्रियाच आहे, पण अर्हॆनिअस व्याख्या ते समजावू शकत नाही.

Lewis आम्ल गिल्बर्ट.एन.लुईस यांनी १९२३ साली आम्लाची एक नवीन व्याख्या दिली. या व्याख्येत प्रोटाॅनबदली शिवाय होणाऱ्या आम्ल-अम्लारी प्रक्रियेंचेदेखील स्पष्टीकरण आहे. लुईस आम्ल म्हणजे जे दुसऱ्या रेणूकडून इलेक्ट्रॉनची जोडी स्वीकारते. Bronsted आम्ल-आम्लारी प्रक्रियेत प्रोटाॅनची अदलाबदली होते तर लुईस आम्ल-आम्लारी प्रक्रियेत इलेक्ट्रॉनच्या जोडीची. सगळी Bronsted आम्ले लुईस आम्ले असतात पण सगळी लुईस आम्ले Bronsted आम्ले नसतात. खालील उदाहरण वरील वाक्याचे स्पष्टीकरण देते:

पहिल्या भागात fluoride विद्युतभारित कण boron trifluoride ला दोन इलेक्ट्राॅन देते आणि मग ते tetraborofluorate मध्ये रूपांतरित होते. ही इलेक्ट्राॅनची जोडी बोरॉन व फ्लोरीन या अणूंच्या मध्ये असते; आणि फ्लोरीन न्युक्लिअसहून लांब असते. म्हणून फ्लोरीन आयन (विद्युतभारित कण) इलेक्ट्रॉनची जोडी देतो.. इलेक्ट्रॉनची जोडी स्वीकारत असल्यामुळे boron trifluoride हे एक लुईस आम्ल आहे. पण हीच प्रक्रिया Bronsted व्याख्येत बसत नाही कारण प्रोटाॅनची अदलाबदल होत नाही आहे. अमोनियाची प्रक्रिया मात्र लुईस आणि Bronsted या दोन्ही व्याख्यांमध्ये बसते. प्रोटाॅन स्वीकारल्यामुळे अमोनिया एक Bronsted आम्लारी आहे तर ते इलेक्ट्रॉनची जोडी hydronium ला देत असल्याने एक लुईस आम्लारीसुद्धा आहे. इलेक्ट्रॉन दान करणारे रेणू लुईस आम्लारी मानले जातात. तर जे इलेक्ट्रॉनची जोडी स्वीकारतात ते लुईस आम्ले असतात. H3O+ मधून जेव्हा हायड्रोजन आयन वेगळा होतो तेव्हा, इलेक्ट्रॉनची जोडी ऑक्सिजनकडे जाते; म्हणून पाण्याचा रेणू एका लुईस आम्लाप्रमाणे वागतो. स्थितीनुसार लुईस आम्लाला electrophile किंवा oxidizer पण म्हणतात.

Bronsted व्याख्या ही सर्वात जास्त प्रचलित आहे. आम्ल-आम्लारी प्रक्रिया म्हणजे प्रोटाॅन अदलाबदल हे मानले जाते. Dissociation (विभाजन) आणि equilibrium (समतोल)

आम्लाच्या रासायनिक प्रक्रिया मुख्यतः HA H+ + A- या रूपाच्या असतात. यात HA हे आम्ल आहे आणि A- हे त्याचे Conjugate आम्लारी आहे. कॉन्ज्युगेट आम्ल-आम्लारी मध्ये फक्त एक प्रोटाॅनचा फरक असतो. प्रोटाॅन मिळण्याने किंवा काढण्याने त्यांचे एकमेकांमध्ये रूपांतर होते. प्रोटाॅन वाढला तर त्याला प्रोटोनेशन असे म्हणतात आणि कमी झाला तर डीप्रोटोनेशन असे म्हणतात. आम्ल विद्युतभारित व त्याचे कॉन्ज्युगेट आम्लारी चार्जविरहित असू शकतात. या स्थितीत प्रक्रिया HA+ H+ + A- अशी असते. मिश्रणात आम्ल व त्याच्या कॉन्ज्युगेट आम्लारीमध्ये एक समतोल किंवा इक्विलिब्रिअम असतो. K एक न बदलणारी संख्या आहे ज्याला इक्विलिब्रिअम कॉन्स्टंट असे म्हणतात. ती मिश्रणातल्या सर्व घटकांच्या स्थिर स्थितीत (इक्विलिब्रिअम)मध्ये असणाऱ्या संख्यांमधला संबंध देते. त्या पदार्थाचे कॉन्सन्ट्रेशन (मोल/लिटर मिश्रण)मध्ये देतात. म्हणजे [H2O] असे लिहिले असेल तर ते जलाचे कॉन्सेन्ट्रेशन सांगते. Ka आम्ल-आम्लारीच्या प्रक्रियेसाठी वापरले जाते. प्रक्रियेत भाग घेणाऱ्या पदार्थांच्या कॉन्सेन्ट्रेशनला प्रक्रिया पूर्ण झाल्यावर मिळणाऱ्या पदार्थांच्या कॉन्सेन्ट्रेशनने भागल्यावर Ka हे कॉन्स्टंट मिळते. आम्लाच्या प्रक्रियेत आम्लाचे कॉन्सेन्ट्रेशन हे अपूर्णांकातील भाजक तर हायड्रोनिअम व कॉन्ज्युगेट आम्लारीच्या कॉन्सेन्ट्रेशनचा गुणाकार अपूर्णांकातील अंशात येतो.

जे आम्ल अधिक तीव्र असते त्याच्या Ka ची संख्या जास्त असते. त्याच्या मिश्रणात हायड्रोनिअम जास्त असतात कारण तीव्र आम्ल अधिक प्रोटाॅन देतात. Ka ही संख्या बऱ्याचदा खूप लहान असल्याने तिला आकड्यांमध्ये मांडणे गैरसोयीचे होते. करते. म्हणून pKa ची संकल्पना वापरली जाते. pKa ची संख्या pKa = -log10Ka या समीकरणाने मिळते. pKa जितका कमी तितकी आम्लाची तीव्रता जास्त. अनेक पुस्तकांत आणि संदर्भग्रंथांत आम्लाच्या पाण्यामधील मिश्रणातील २५°C तापमानाला असणाऱ्या pKa या संख्या दिलेल्या असतात. Nomenclature (आम्लाचे नामकरण)

क्लासिकल नामकरण पद्धतीत आम्लांची शास्त्रीय नावे त्यांच्या ॲनायन (anion) वरून ठेवण्यात यायची. त्या ॲनायनच्या पुढे लागलेले प्रत्यय काढून त्याच्या आधी एक नवीन प्रत्यय जोडण्यात येतो.. खालील तक्त्यात हे प्रत्यय दिले आहेत. उदाहरणार्थ HCl मध्ये chloride आयन असतो म्हणून त्याला hydrochloric acid असे म्हणतात. IUPAC नामकरणात त्या रेणूच्या नावाआधी aqueous जोडतात. उदाहरण म्हणजे HCl ला aqueous hydrogen chloride असे म्हणतात. ज्या आम्लांमध्ये फक्त हायड्रोजन आणि अजून एकच पदार्थाचा रेणू असतो त्याच्या नावाआधी ‘hydro’ लावतात.

क्लासिकल नामकरण :

ॲनायनच्या आधी असणारा प्रत्यय, ॲनायनच्या नंतर असणारा प्रत्यय, आम्लाच्या आधी असणारा प्रत्यय, आम्लाच्या नंतर असणारा प्रत्यय यांची उदाहरणे :

per Ate per ic acid perchloric acid (HClO4)

Ate ic acid chloric acid (HClO3)

Ite ous acid chlorous acid (HClO2)

Hypo Ite hypo ous acid hypochlorous acid (HClO)

Ide hydro ic acid hydrochloric acid (HCl)

आम्लाची तीव्रता:

आम्लाची तीव्रता त्याच्या प्रोटाॅन देण्याच्या क्षमतेवर आवलंबून आहे. जे आम्ल पाण्यात पूर्णपणे आयनमध्ये विभाजित होते, म्हणजे एक मोल आम्ल, एक मोल हायड्रोजन आणि एक मोल कॉन्ज्युगेट आम्लारी देते, ते आम्ल तीव्र असते. ते पाण्यात विरघळले की पूर्णपणे विभाजित होते, आणि आम्लाच्या म्हणजे पूर्ण रेणूच्या स्वरूपात राहत नाही. जे आम्ल कमी तीव्र असते ते पूर्णपणे पाण्यात विरघळत नाही. त्याच्या मिश्रणात आम्ल आणि कॉन्जुगेट आम्लारी दोघांचे रेणू असतात. Hydrochloric acid (HCl), hydroiodic acid (HI), hydrobromic acid (HBr), perchloric acid (HClO4), nitric acid (HNO3) आणि sulfuric acid (H2SO4) ही काही तीव्र आम्लांची उदाहरण आहेत. ही आम्ल पाण्यात पूर्णपणे आयन मध्ये विभाजित होतात. आम्लाची प्रोटाॅन देण्याची क्षमता H आणि A हे अणू आम्लाच्या रेणूंमध्ये किती स्थिर राहतात यावर अवलंबून आहे. ही स्थिरता A च्या आकारावर अवलंबून आहे. पाण्यात किंवा मिश्रणात कॉन्ज्युगेट आम्लारी किती स्थिर आहे ह्यावर पण आम्लाची तीव्रता अवलंबून असते. Ka जितके जास्त किंवा pKa जितके कमी तितकी आम्लाची तीव्रता जास्त.

रासायनिक गुणधर्म:

मोनोप्रोटिक आम्ल-

ज्या आम्लांचा एक रेणू पाण्यात एकच हायड्रोनिअम आयन देतो त्या आम्लांना मोनोप्रोटिक आम्ल म्हणतात. खालचे समीकरण एक साधारण मोनोप्रोटिक आम्लाचे विभाजन दाखवते :

HA(aq) + H2O(l) H3O+(aq) + A−(aq)

Ka(aq) म्हणजे aqueous किंवा पाण्यातील विलयन. )

Hydrochloric acid (HCl) and Nitric acid (HNO3) ही मोनोप्रोटिक आम्लाची सामान्य उदाहरणे आहेत. ऑरगॅनिक आम्लांमध्ये एक कारबाॅक्सिलिक (carboxyilic-COOH) ग्रुप असतो. म्हणून त्यांना मोनोकारबाॅक्सिलिक (monocarboxylic) आम्ले असे म्हणतात. Formic acid (HCOOH), acetic acid (CH3COOH) आणि benzoic acid (C6H5COOH) ही ऑरगॅनिक आम्लांची उदाहरणे आहेत.

पॉलिप्रोटिक आम्ल-

जी आम्ले पाण्यात विरघळल्यावर एका क्षा जास्त हायड्रोनिअम आयन देतात त्यांना पॉलिप्रोटिक आम्ल म्हणतात. मोनोप्रोटिक आम्ल एकच हायड्रोनिअम आयन देतात पण पॉलिप्रोटिक आम्ल एकापेक्षा जास्त देतात. हायड्रोननिअम आयनच्या संख्येवरून पॉलिप्रोटिक आम्ले विभागली गेली आहेत. दोन हायड्रोनिअम आयन देणाऱ्या पॉलिप्रोटिक आम्लांना डायप्रोटिक म्हणतात (diprotic – di म्हणजे दोन) आणि जी तीन हायड्रोनिअम आयन देतात त्यांना ट्रायप्रोटिक म्हणतात (triprotic – tri म्हणजे तीन).

डायप्रोटिक आम्ल-

(H2A) दोनदा आयनमध्ये विभाजित होतात. दोन्ही प्रक्रियेचे कॉन्स्टंट आहेत: Ka1 आणि Ka 2.

H2A(aq) + H2O(l) H3O+(aq) + HA−(aq) Ka1

HA−(aq) + H2O(l) H3O+(aq) + A2−(aq) Ka 2

पहिल्या प्रक्रियेत विभाजन जास्त असते. म्हणून पहिल्या प्रक्रियेचा कॉन्स्टंट जास्त असतो : Ka1 > Ka2. उदाहरणासाठी सल्फ्युरिक आम्ल (H2SO4) एक हायड्रोजन आयन देऊन बायसल्फेट आयन (HSO4−), मध्ये रूपांतरित होते; या प्रक्रियेचा कॉन्स्टंट खूप जास्त आहे म्हणून सल्फ्यूरिक आम्ल एक तीव्र आम्ल आहे. बायसल्फेट आयन अजून एक हायड्रोजन आयन देऊन सल्फेट आयन (SO4)2-) मध्ये रूपांतरित होत. या प्रक्रियेचा कॉन्स्टंट इतका जास्त नसतो, पण Ka1 खूप जास्त असल्याने सल्फ्यूरिक आम्ल हे एक तीव्र आम्ल आहे. असेच कार्बोनिक आम्ल (H2CO3) एक उदाहरण आहे. ते देखील एक हायड्रोनिअम आयन देऊन बायकार्बोनेट आयन (HCO3−) मध्ये रूपांतरित होते, आणि त्यानंतर अजून एक हायड्रोनिअम आयन देऊन कार्बोनेट आयन- (CO3)2-मध्ये. पण या प्रक्रियेत दोन्ही Ka1 आणि Ka2 कमी आहेत; म्हणून कारबाॅनिक आम्लाची तीव्रता कमी आहे.

ट्रायप्रोटिक आम्ल एक, दोन, किंवा तीन हायड्रोनिअम आयन देऊ शकते आणि त्याचे तीन कॉन्स्टंट आहेत, ज्यात Ka1 > Ka2 > Ka3.

H3A(aq) + H2O(l) H3O+(aq) + H2A−(aq) Ka1

H2A−(aq) + H2O(l) H3O+(aq) + HA2−(aq) Ka 2

HA2−(aq) + H2O(l) H3O+(aq) + A3−(aq) Ka 3

ऑर्थोफाॅस्फाॅरिक आम्ल (H3PO4) हे एक ट्रायप्रोटिक आम्लाचे उदाहरण आहे. त्याला फाॅस्फाॅरिक आम्ल म्हणतात. ते हायड्रोनिअम आयन देऊन H2PO4− आयन, मग H(PO4)2- आणि शेवटी (PO4)3- आयनमध्ये रूपांतरित होते. सायट्रिक आम्ल हे एक ऑरगॅनिक ट्रायप्रोटिक आम्लाचे उदाहरण आहे. ते तीन हायड्रोजन आम्ले देऊन सायट्रेट आम्लात रूपांतरित होते. मात्र तिन्ही आम्ले सम प्रमाणात दिली जात नाहीत, जसा कॉन्ज्युगेट बेसवर चार्ज वाढतो तशी त्याची हायड्रोनिअम द्यायची क्षमता कमी होते. Ka ची संख्या प्रत्येक विभाजनाबरोबर कमी होते.

जरी प्रत्येक विभाजनाबरोबर हायड्रोनिअमची संख्या कमी होते तरी मिश्रणात सगळे कॉन्जुगेट आम्लारी असतात. प्रत्येक बेसच कॉन्सनट्रेशन α (अल्फा) दर्शावत. उदाहरासाठी H2A, HA-, आणि A2- हे तीन आयन एका ट्रायप्रोटिक आम्लाच्या मिश्रणात असतात. जर मिश्रणाचे पी.एच दिले असेल तर प्रत्येक कॉन्ज्युगेट आम्लासाठी α शोधता येते.


वरील समीकरणांवरून कुठल्याहि n-प्रोटिक आम्लासाठी i विभाजनानंतर असणाऱ्या कॉन्ज्युगेट आम्लारीचे कॉन्सेन्ट्रेशन काढता येते :

यात K 0 = 1 आहे आणि बाकी सगळे K हे आम्लाच्या विभाजनप्रक्रियेचे कॉन्स्टंट आहेत. आम्ल-आम्लारी प्रक्रिया (न्युट्रलायझेशन)

न्युट्रलायलेशन म्हणजे आम्ल-आम्लारीमध्ये होणारी प्रक्रिया : या प्रक्रियेमुळे एक क्षार आणि न्युट्रलाइझ्ड आम्लारी बनते. उदाहरणासाठी hydrogen chloride हे आम्ल आणि sodium hydroxide हा आम्लारी एकत्र केल्यावर sodium chloride हा क्षार आणि पाणी तयार होते.

HCl(aq) + NaOH(aq) → H2O(l) + NaCl(aq)

टायट्रेशनच्या मागचे शास्त्र म्हणजे न्युट्रलायझेशन. टायट्रेशनमध्ये इक्विव्हॅलन्स पॉइंट काढतात. ज्या क्षणी आम्ल आम्लारी प्रक्रिया पूर्ण होते, त्याक्षणी प्रक्रियेसाठी लागणाऱ्या आम्ल-आम्लारी यांच्या संख्या बरोबर असतात. आम्ल-आम्लारी प्रक्रियेनंतर पी.एच. संख्या ७ असली पाहिजे हा एक गैरसमज आहे. मिश्रणाची संख्या आम्ल आणि अम्लारींच्या गुणधर्म किंवा तीव्रतेवर अवलंबून आहे. जर आम्लारी आम्लापेक्षा कमी तीव्र असेल तर मिश्रण आम्लाचे गुणधर्म दाखवते. उदाहरणासाठी ammonia या आम्लारीची तीव्रता hydrogen chloride या आम्लापेक्षा कमी आहे म्हणून ammonium chloride ह्या क्षाराचे बनणारे मिश्रण आम्लाचे गुणधर्म दाखवते. तसेच जर आम्लारी अधिक तीव्र असेल तर मिश्रण आम्लारीचे गुणधर्म दाखवतात.

Sodium hydroxide ह्या तीव्र आम्लारी बरोबर hydrogen fluorideच्या प्रक्रियेने sodium fluoride ह्या क्षाराचे मिश्रण बनते. ते आम्लारीचे गुणधर्म दाखवते.

जे आम्ल-आम्लारी कमी तीव्र असतात त्यांच्या प्रक्रिया विरुद्ध दिशेला जातात. जर मिश्रणाची पी.एच. संख्या आम्लाच्या pKa पेक्षा जास्त असेल तर आम्ल हायड्रोनिअम आयन देते. पण हळू हळू, मिश्रणातील हायड्रोनिअमचे कॉन्सेन्ट्रेशन वाढते आणि प्रक्रिया विरुद्ध दिशेला जाते; म्हणजे कॉन्जुगेट आम्लारी प्रोटोनेट होऊन आम्लात रूपांतरित होतो. म्हणून कमी तीव्र असलेल्या आम्ल-आम्लारी प्रक्रियेत क्षार आणि पाण्यापासून आम्ल-आम्लारी बनतात. मिश्रणाचे पी.एच. आम्ल-आम्लारीवर अवलंबून असते. ह्या मिश्रणांना buffer (बफर) मिश्रण म्हणून वापरतात. आम्लाचे उपयोग

आम्लांचे बरेच उपयोग आहेत. आम्ल धातूंवरील गंज काढायला वापरतात. या प्रक्रियेला pickling (पिक्लिंग) असे म्हणतात. ते बॅटरीमध्ये वापरतात. उदाहरणासाठी सल्फ्युरिक आम्ल मोटारगाड्यांच्या बॅटरीमध्ये वापरतात. धातूंच्या शुद्धीकरणात सल्फ्युरिक आम्लासारखी तीव्र आम्ले वापरली जातात. सल्फ्युरिक आम्लाच्या फाॅस्फेट (phosphate) धातूंबरोबरच्या प्रक्रियेने फाॅस्फाॅरिक आम्ल बनते, ते शेतातील खतांसाठी वापरतात. जाते. झिंक ऑक्साईडला सल्फ्यूरिक आम्लात टाकून शुद्धीकरण केले की जस्त हा धातू मिळतो.

रासायनिक कारखान्यांमध्ये आम्ल-आम्लारी प्रक्रियेने क्षार बनवण्यात येते. अमोनिअम नायट्रेट हे खत बनवण्यासाठी अमोनिअम हायड्रोक्साईड आणि नायट्रिक आम्ल वापरली जातात. कार्बोक्सिलिक आम्ल आणि अल्कोहोलने ॲस्टर बनवतात.

खाद्यपदार्थात त्यांची चव वाढवायला व ते टिकावेत म्हणूनदेखील आम्ले घालतात. उदाहरणादाखल कोकाकोलामध्ये फाॅस्फाॅरिक आम्ल टाकतात. ॲसेटिक आम्ल म्हणजे व्हिनेगर, हे सामान्य जीवनात वापरले जाते. कार्बोनिक आम्ल कोकाकोला आणि सोड्यामध्ये टाकले जाते. सायट्रिक आम्ल हे पदार्थ नासावा म्हणून खाद्य पदार्थांमध्ये टाकतात.

सामान्य खाद्यपदार्थांमध्ये टार्टारिक आम्ल असते. टार्टारिक आम्ल हा चिंचेचा आणि कैरीचा एक घटक आहे. सायट्रिक आम्ल हे लिंबू, संत्री अशा आंबट फळांमध्ये असते. टाॅमॅटो आणि पालक या भाज्यांमध्ये ऑक्झॅलिक आम्ल असते.

ॲस्कॉर्बिक आम्ल हे व्हिटॅमिन C आहे. ते लिंबू, संत्री, पेरू अश्या आंबट फळांमध्ये आढळते आणि शरीरासाठी आवश्यक असते.

ॲसेटाईल सॅलिसिलिक आम्ल किंवा ॲस्पिरीन हे एक शारीरिक वेदना कमी करायला किंवा तापावर औषध म्हणून वापरले जाते.

आपल्या शरीरात देखील आम्ले मोठी भूमिका निभावतात. हायड्रोक्लोरिक आम्ल हे पचनात मदत करते. हे आम्ल आपल्या पोटात असते व मोठ्या रेणूंना छोट्या भागांमध्ये विभाजित करायला साहाय्य करते. ॲमिनो आम्ल हे प्रोटीन निर्मितीत लागते. प्रोटीन शरीराच्या वाढीसाठी व दुरुस्तीसाठी आवश्यक असतात. तसेच फॅटी आम्ले पण शरीराच्या वाढीसाठी व दुरुस्तीसाठी आवश्यक असतात. न्युक्लिक आम्ल DNA, RNA यांच्या निर्मितीत लागतात. DNA आणि RNA आपले गुणधर्म ठरवतात, मुलाकडे पालकांचे गुणधर्म या जीन्समुळे जातात. कार्बाॅनिक आम्ल शरीराची पी.एच. संख्या स्थिर ठेवण्यात साहाय्य करतो.

आम्लांचे व आम्लारींचे वर्गीकरण :-

तीव्र व सौम्य आम्ल, आम्लारी आणि अल्क(ली)

आम्ल व आम्लारींच्या पाण्यातील द्रावणांमधे त्यांचे विचरण किती प्रमाणात होते त्यावरून त्यांचे वर्गीकरण तीव्र व सौम्य या दोन प्रकारात करतात.

१)तीव्र आम्ल (strong acid) : तीव्र आम्ल पाण्यात विरघळले असता त्याचे विचरण जवळजवळ पूर्ण होते व त्यांच्या जलीय द्रावणात H+ व संबंधित आम्लाचे आम्लधर्मी मूलक हे आयनच प्रामुख्याने असतात.

उदाहरणार्थ :  HCl, H2SO4, HNO3.

२)सौम्य आम्ल (Weak acids ) : सौम्य आम्ल पाण्यात विरघळले असता त्याचे विचरण पूर्ण होत नाही व त्यांच्या जलीय द्रावणात थोड्या प्रमाणात H+ व संबधित आम्लाचे आम्लधर्मी मूलक व आयनांच्या बरोबर विचरण न झालेले आम्लाचे रेणू मोठ्या प्रमाणात असतात.

उदाहरणार्थ: CH3COOH,H2CO3.

३)तीव्र आम्लारी (Strong base) : तीव्र आम्लारी पाण्यात विरघळले असता त्यांचे विचरण पूर्ण होते व त्यांच्या जलीय द्रावणात OH- व संबंधित आम्लाचे आम्लधर्मी मूलक हे आयनच प्रामुख्याने असतात.

उदाहनार्थ :NaOH, KOH, Na2O.

४)सौम्य आम्लारी (weak base) : सौम्य आम्लारी पाण्यात विरघळले असता त्यांचे विचरण पूर्ण होत नाही व त्या जलीय द्रावणात कमी प्रमाणातील  OH- व संबंधiत आम्लारिधर्मी मूलकाबरोबर विचरण न झालेले आम्लारींचे रेणू मोठ्या प्रमाणात असतात.

उदाहरणार्थ : NH4OH

अल्क (alkali ): जे आम्लारी पाण्यात मोठ्या प्रमाणात विद्राव्य असतात त्यांना अल्क म्हणतात.

उदाहरणार्थ: NaOH, KOH  व NH3 यापैकी NaOH व KOH हे तीव्र अल्क आहेत व NH3 हा सौम्य अल्क आहे.