बोरची अणूची प्रतिकृती

विकिपीडिया, मुक्‍त ज्ञानकोशातून
Jump to navigation Jump to search
रुदरफोर्ड-बोर प्रतिकृती

अणुभौतिकीमध्ये, रूदरफोर्ड-बोर प्रतिकृती किंवा बोर प्रतिकृती ही अणूची अंतर्गत रचना स्पष्ट करणारी प्रतिकृती आहे. नील्स बोर यांनी १९१३ मध्ये ही प्रतिकृती मांडली. या प्रतिकृतीनुसार प्रत्येक अणुमध्ये धन विद्युतप्रभार असणारे अणुकेंद्रक असते आणि या अणुकेंद्रकाभोवती ऋण विद्युतप्रभार असणारे इलेक्ट्रॉन वर्तुळाकार रेषेत फिरत असतात. अणुकेंद्रक हे धन विद्युतप्रभार असणारे प्रोटॉन आणि कोणताही विद्युतभार नसणारे न्युट्रॉन यांनी बनलेले असते. अणूची ही प्रतिकृती आपल्या सौरमालेसारखीच आहे. अणुकेंद्रक हे सूर्यासारखे तर त्याभोवती फिरणारे इलेक्ट्रॉन ग्रहांसारखे आहेत आणि गुरुत्वाकर्षणाएवजी येथे विद्युतचुंबकीय बल कार्यरत असते. रुदरफोर्डची अणूची मूळची प्रतिकृती आणि ही प्रतिकृती यांतील प्रमुख फरक म्हणजे स्थिर कक्षांची संकल्पना. बोर यांनी इलेक्ट्रॉनची अणूमधील हालचाल ही मर्यादित असते असे सुचवले व त्यासाठीचे काटेकोर गणितीय नियम वापरून रुदरफोर्डच्या प्रतिकृतीमध्ये बदल केला.

उगम[संपादन]

विसाव्या शतकाच्या सुरुवातीला अर्नेस्ट रुदरफोर्ड यांनी स्वतःच्या अणूवर केलेल्या प्रयोगांच्या आधारे अणूची प्रतिकृती सुचवली होती. या प्रतिकृतीमध्ये अणूमधील धन विद्युतभार हा अणूच्या मध्यभागी एका छोट्या जागेत असून इलेक्ट्रॉन्स हे या अणुकेंद्रकाभोवती फिरतात असे मानले गेले होते. परंतु अभिजात यामिकीच्या नियमांनुसार ऋणप्रभारित इलेक्ट्रॉन वर्तुळाकार कक्षेत फिरत असताना विद्युतचुंबकीय प्रारण बाहेर टाकत राहतील. यामुळे त्यांची ऊर्जा आणि पर्यायाने त्यांच्या कक्षेची त्रिज्या कमी होत जाईल आणि ते अणुकेंद्रकात पडतील. अर्थात असे होत असेल तर अणूचे आणि पर्यायाने जगातील सर्व पदार्थांचे अस्तित्वच धोक्यात येते. त्याचप्रमाणे, जर इलेक्ट्रॉनची कक्षा लहान होत जात असेल तर अणूमधून बाहेर येणार्‍या प्रारणाची वारंवारता सलग असायला हवी मात्र १९व्या शतकातील प्रयोगांमधून असे स्पष्टपणे दिसून आले होते की अणू केवळ काही तुटक वारंवारतेचे प्रारण बाहेर टाकतात.

रुदरफोर्ड यांच्या प्रतिकृतीमधील या त्रुटी दूर करण्यासाठी नील्स बोर यांनी या प्रतिकृतीमध्ये काही बदल करून जी नवी प्रतिकृती बनवली तिला आपण आज बोरची अणूची प्रतिकृती म्हणून ओळखतो. त्यांनी खालील गोष्टी सुचवल्या:

  1. अणूमध्ये इलेक्ट्रॉन अणुकेंद्रकाभोवती परिभ्रमण करतात.
  2. इलेक्ट्रॉन काही विशिष्ट त्रिज्या असणार्‍या कक्षांमध्येच (ज्यांना बोरने 'स्थिर कक्षा' असे नाव दिले [१]) प्रारण उत्सर्जित न करता परिभ्रमण करत राहू शकतात. या कक्षांमध्ये इलेक्ट्रॉनला विशिष्ट ऊर्जा असते आणि यामुळे या कक्षांना ऊर्जा पातळ्या असे देखील म्हटले जाते. ज्या कक्षांमध्ये इलेक्ट्रॉनचा कोनीय संवेग हा 'प्लॅंकच्या आकुंचित स्थिरांकाच्या' (ħ) पटीत असतो, केवळ अशा कक्षाच स्थिर कक्षा असू शकतात.

येथे हे अनुक्रमे इलेक्ट्रॉनचे वस्तुमान व वेग दर्शवतात, आणि हा स्थिर कक्षेची त्रिज्या दर्शवतो.
  1. इलेक्ट्रॉनला एका कक्षेमधून दुसर्‍या कक्षेमध्ये जाऊनच स्वतःची ऊर्जा बदलता येऊ शकते. ज्यावेळी इलेक्ट्रॉन वरच्या ऊर्जा पातळीमधून खालच्या ऊर्जा पातळीमध्ये उडी घेतो तेव्हा त्याची ऊर्जा कमी होते व कमी होणारी ऊर्जा ही विद्युतचुंबकीय प्रारणाच्या स्वरूपात अणूमधून बाहेर टाकली जाते. या उत्सर्जित होणार्‍या प्रारणाची वारंवारता दोन ऊर्जा पातळ्यांमधील फरकाशी समप्रमाणात असते. याउलट अणू ज्यावेळी प्रारण शोषून घेतो तेव्हा अणूमधील जे इलेक्ट्रॉन या प्रारणातील ऊर्जा शोषतात ते वरच्या ऊर्जा पातळीमध्ये जातात. असे होण्यासाठी बाहेरून आलेल्या प्रारणाची वारंवारता ही दोन ऊर्जा पातळ्यांमधील फरकाशी समप्रमाणात असेल तरच इलेक्ट्रॉन वरच्या पातळीत जाऊ शकतात. जर हा आणि या ऊर्जा पातळ्यांमधील फरक असेल तर इलेक्ट्रॉनने शोषित किंवा उत्सर्जित केलेल्या प्रारणाची वारंवारता खाली दिलेल्या "प्लॅंकच्या नियमाने" दिली जाते.

    येथे h हा प्लॅंकचा स्थिरांक आहे.

इलेक्ट्रॉनच्या ऊर्जा कक्षा[संपादन]

वेगवेगळ्या अणूंमधील इलेक्ट्रॉनच्या ऊर्जा पातळ्या दाखवणार्‍या प्रतिकृती

एकमेकांभोवती प्रकाशाच्या वेगापेक्षा बर्‍याच कमी वेगाने फिरणार्‍या दोन विद्युतभारीत कणांच्या संहतीसाठी बोरची प्रतिकृती जवळपास अचूक ठरते. हायड्रोजनचा अणू, एक इलेक्ट्रॉन निघून गेलेला हेलियमचा अणू, दोन इलेक्ट्रॉन निघून गेलेला लिथियमचा अणू, पॉझिट्रॉनियम आणि कोणत्याही अणूच्या रेडबर्ग अवस्था अशा संहतींची उदाहरणे आहेत.

बोरच्या प्रतिकृतीमधील इलेक्ट्रॉनच्या कक्षांच्या त्रिज्या ठरवण्यासाठी खालीलप्रमाणे गणित मांडता येते.

अभिजात भौतिकीनुसार, इलेक्ट्रॉन हा त्यातील आणि अणुकेंद्रकातील विद्युतस्थितिकीय आकर्षणामुळे त्याच्या कक्षेत राहू शकतो. त्यामुळे अपकेंद्र बलाची भूमिका कुलम्बचे बल बजावते.
येथे me हे इलेक्ट्रॉनचे वस्तुमान, e हा त्यावरील विद्युतभार, ke हा कुलम्बचा स्थिरांक आणि Z हा अणूचा अणूक्रमांक आहे. अणुकेंद्रकाचे वस्तुमान हे इलेक्ट्रॉनच्या वस्तुमानापेक्षा खूप जास्त असल्याने अणुकेंद्रक हे स्थिर आहे असे मानले आहे. हे समीकरण आपल्याला इलेक्ट्रॉनचा वेग आणि त्याच्या कक्षेची त्रिज्या यांतील गणितीय संबंध देते:
हेच समीकरण कोणत्याही त्रिज्येसाठी इलेक्ट्रॉनची एकूण ऊर्जादेखील निश्चित करते:
यावरून असे दिसते की एकूण ऊर्जा ऋण असून r बरोबर व्यस्तप्रमाणात आहे. याचा अर्थ असा की केंद्रकाभोवती परिभ्रमण करणार्‍या इलेक्ट्रॉनला बाहेर खेचण्यासाठी बाहेरून ऊर्जा द्यावी लागते. ज्यावेळी r ची किंमत अनंत असेल त्यावेळी ही ऊर्जा शून्य असेल.
वर दिल्याप्रमाणे, जेव्हा त्या कक्षेतील इलेक्ट्रॉनचा कोनीय संवेग L हा 'प्लॅंकच्या आकुंचित स्थिरांकाच्या' (ħ) पूर्णांकपटीत असेल तेव्हाच इलेक्ट्रॉनची कक्षा ही स्थिर कक्षा असेल :
वरचे वेगासाठी मिळालेले पद यामध्ये टाकल्यास खालीलप्रमाणे इलेक्ट्रॉनच्या स्थिर कक्षांची त्रिज्या दाखवणारे समीकरण मिळते:
म्हणजेच कोणत्याही n या धन पूर्णांकासाठीची स्थिर कक्षेची त्रिज्या अशी लिहिता येईल:
स्थिर त्रिज्येची सर्वांत लहान किंमत ही हायड्रोजन अणूसाठी (Z=1) मिळते. या त्रिज्येला बोर त्रिज्या म्हणून ओळखले जाते. बोर त्रिज्येची किंमत खालीलप्रमाणे आहे:
अणूच्या पातळी-n' मधील इलेक्ट्रॉनची ऊर्जा ही त्याच्या स्थिर कक्षेची त्रिज्या आणि पुंजक्रमांक n यांवरून ठरते:

म्हणजेच हायड्रोजन अणूच्या सर्वांत खालच्या ऊर्जापातळीमध्ये असणार्‍या (n = 1) इलेक्ट्रॉनची ऊर्जा अणुकेंद्रकापासून अनंत अंतरावर स्थिर असणार्‍या इलेक्ट्रॉनच्या ऊर्जेपेक्षा जवळपास 13.6 eV एवढी कमी असते. यानंतरची ऊर्जा पातळी (n = 2) ही −3.4 eV इतकी आहे तर त्यानंतरची पातळी (n = 3) ही −1.51 eV आहे. अणूमध्ये प्रत्येक n साठी एक म्हणजे एकूण अनंत ऊर्जा पातळ्या अस्तित्वात असतात.

संदर्भ[संपादन]

  1. ^ Niels Bohr (1913). "On the Constitution of Atoms and Molecules, Part II Systems Containing Only a Single Nucleus" (PDF). Philosophical Magazine. 26 (153): 476–502. doi:10.1080/14786441308634993.