त्रिज्यी

विकिपीडिया, मुक्‍त ज्ञानकोशातून
एखाद्या वर्तुळाच्या कंसाची लांबी त्रिज्येइतकी घेतली तर वर्तुळकेंद्रापाशी तयार होणारा कोन एक त्रिज्यी असतो.

त्रिज्यी(इंग्रजीत रेडियन) हे कंस आणि त्रिज्येतील गुणोत्तर आहे. त्रिज्यी हे कोन मोजण्याचे सामान्य एकक असून ते गणितातल्या अनेक शाखांमध्ये वापरले जाते. हे एकक पूर्वाश्रमीचे (S.I.=इंटरनॅशनल सिस्टिम ऑफ युनिट्स्)एस. आयचे पुरवणी एकक होते, परंतु १९९५ मध्ये हा वर्ग रद्द करण्यात आला आणि सध्या त्या वर्गातल्या एककांना एस. आय.चे साधित एकक असे म्हणतात. त्रिज्यीला इंग्रजीमध्ये radian (रेडियन) म्हटले जाते. हे (समतल)सपाट कोनाचे एकक आहे. घन कोनासाठी चौत्रिज्यी हे एस. आय. एकक आहे.

त्रिज्यी हे rad किंवा c चिन्हाने दाखविले जाते. उदा १.२ त्रिज्यीचा कोन १.२ rad असा दाखवितात. c हे अक्षर circular measure (सर्क्युलर मेज्हर - वर्तुळीय मापन) ह्या अर्थाने वापरले जाते व ते अंकाच्या उजव्या बाजूला किंचित वर लिहिले जाते. उदा. १.२c. अंश(उदा० 1.2°) हे जसे कोनाचे माप आहे तसेच त्रिज्यीसुद्धा आहे. त्रिज्यी हे दोन लांबींचे गुणोत्तर असल्याने तो एक शुद्धांक आहे, म्हणून त्याला एकक चिन्ह लावले नाही तरी चालते. त्यामुळे बऱ्याच गणिती लेखनामध्ये rad किंवा c ही चिन्हे लावली जात नाहीत. अंशाचे चिन्ह नसले की तो कोन त्रिज्यीमध्ये मोजला गेला आहे असे गृहीत धरले जाते. मराठीत त्रिज्यी हे माप त्रि ह्या चिन्हाने दाखविले जाते. उदा. १.२ त्रिज्यी हा १..२ त्रि असा दाखवितात. आणि जेव्हा कोनाचे माप अंशात असते तेव्हा ° हे चिन्ह आवर्जून वापरले जाते.

व्याख्या[संपादन]

त्रिज्यी म्हणजे ज्या वर्तुळाच्या केंद्रापासून काढलेल्या दोन त्रिज्यांमधील कोनासमोर आलेल्या वर्तुळाच्या कंसाच्या लांबीला त्रिज्येने भागणे होय. जर अशा कंसाची लांबी वर्तुळाच्या त्रिज्येइतकी असली तर ता कोनास एक त्रिज्यी कोन म्हणतात. सामान्यपणे सांगायचे झाले तर, अशा कोनाचे त्रिज्यीमधील मूल्य हेच संबंधित कमानलांबी आणि वर्तुळाची त्रिज्या यांचे गुणोत्तर असते. म्हणजेच,
θ = कंस /त्रिज्या किंवा इंग्लिश: θ = s /r
θ = त्रिज्यीमध्ये समोरील कोनाचे माप, कं/s = कंसाची लांबी/कमानलांबी, आणि त्रि/r = त्रिज्या. उलटपक्षी कोनाने बंदिस्त केलेल्या समोरचा कंसाची लांबी ही त्रिज्यीमधल्या कोनाच्या मापाला त्रिज्येने गुणल्यावर येते.

ह्यावरून हे स्पष्ट होते की वर्तुळाच्या एका पूर्ण फेरीचे (३६० अंश) त्रिज्यीमधले मूल्य म्हणजे पूर्ण परीघाला त्रिज्येने भागण्याइतके, म्हणजेच २πr /r, किंवा २π होय. ह्याचा अर्थ २π त्रिज्यी म्हणजेच ३६० अंश होय, ह्याचाच अर्थ एक त्रिज्यी म्हणजेच १८०/π होय.

इतिहास[संपादन]

कोनाच्या अंशाच्या मापनाऐवजी त्रिज्यी मापनाच्या संकल्पनेचे श्रेय बहुधा १७१४ मधल्या रॉजर कोट्स ह्यांना जाते.[१] त्यांनी नाव वगळता ह्याचा शोध लावला आणि त्यातले कोनीय मापनाचे एकक म्हणून असलेला नैसर्गिकपणा ओळखला.

radian ही संज्ञा पहिल्यांदाच ६ जून १८७३ मध्ये बेलफास्टच्या क्वीन्स महाविद्यालयातील जेम्स थॉम्सनने (लॉर्ड केल्विनचा भाऊ) काढलेल्या परीक्षा प्रश्नपत्रिका संचाच्या मुद्रणात आली. त्याआधी १८६९ मध्ये थॉमस मुईर rad, radial आणि radian ह्या संज्ञेबाबतीत द्विधामनस्थितीत होता. नंतर १८७४ मध्ये जेम्स थॉम्सनच्या सल्ल्याने त्याने radian ही संज्ञा वापरायला सुरुवात केली.[२][३][४]

रुपांतरण[संपादन]

अंश आणि त्रिज्यीमधील रूपांतरण[संपादन]

अंश आणि त्रिज्यी रुपांतरण तक्ता

आधी सांगितल्याप्रमाणे, एक त्रिज्यी म्हणजेच १८०/π अंश. म्हणजेच त्रिज्यी मधून अंशात रुपांतर करायला १८०/π ने गुणावे.

 \mbox{deg} = \mbox{rad} \cdot \frac {180^\circ} {\pi}

उदाहरणार्थ:

1 \mbox{ rad} = 1 \cdot \frac {180^\circ} {\pi} \approx 57.2958^\circ


2.5 \mbox{ rad} = 2.5 \cdot \frac {180^\circ} {\pi} \approx 143.2394^\circ


\frac {\pi} {3} \mbox{ rad} = \frac {\pi} {3} \cdot \frac {180^\circ} {\pi} = 60^\circ

उलटपक्षी, अंशातून त्रिज्यीमध्ये रुपांतर करायला π/१८० ने गुणावे.

 \mbox{rad} = \mbox{deg} \cdot \frac {\pi} {180^\circ}

उदाहरणार्थ:

1^\circ = 1 \cdot \frac {\pi} {180^\circ} \approx 0.0175 \mbox{ rad}

23^\circ = 23 \cdot \frac {\pi}  {180^\circ} \approx 0.4014 \mbox{ rad}

त्रिज्यीला फेर्‍यांमध्ये रुपांतर करायला तीस २π ने भागावे.

त्रिज्यीतून अंश रुपांतरणाची सिद्धता[संपादन]

आपल्याला माहितीच आहे की वर्तुळाच्या परीघाची लांबी 2\Pi r, r = वर्तुळाची त्रिज्या.

म्ह्णूनच आपण असे म्ह्णू शकतो की:-

360^\circ \iff 2\Pi r [पूर्ण वर्तुळ काढायला 360^\circ गरज असते]

त्रिज्यीच्या व्याख्येप्रमाणे, पूर्ण वर्तुळ म्हणजे:-

\frac{2\Pi r}{r} radian

= 2\Pi radian \,\!

वरील दोन समीकरणे एकत्र केली तर:-

2\Pi radian = 360^\circ

\Rrightarrow 1 radian = \frac{360^\circ}{2\Pi}

\Rrightarrow 1 radian = \frac{180^\circ}{\Pi}

त्रिज्यी आणि सूत्रिज्यी मधील रुपांतरण[संपादन]

2\pi त्रिज्यी म्हणजेच एक फेरी किंवा ४००g (४०० सूत्रिज्यी). म्हणून त्रिज्यीमधून सूत्रिज्यीत रुपांतर करताना त्यास २००/π ने गुणावे आणि सूत्रिज्यीमधून त्रिज्यीत रुपांतर करताना त्यास π/२०० ने गुणावे. उदा.

1.2 \mbox{ rad} = 1.2 \cdot \frac {200^{\rm g}} {\pi} \approx 76.3944^{\rm g}
50^{\rm g} = 50 \cdot \frac {\pi} {200^{\rm g}} \approx 0.7854 \mbox{ rad}

सामान्य कोनांच्या मापनांचे रुपांतरण दाखविणारा तक्ता:-

एकक Values
फेरी   0 \tfrac{\tau}{12} \tfrac{\tau}{8} \tfrac{\tau}{6} \tfrac{\tau}{4} \tfrac{\tau}{2} \tfrac{3\tau}{4} \tau
अंश   ०° ३०° ४५° ६०° ९०° १८०° २७०° ३६०°
त्रिज्यी \tfrac{\pi}{6} \tfrac{\pi}{4} \tfrac{\pi}{3} \tfrac{\pi}{2} \pi \tfrac{3\pi}{2} \pi
सूत्रिज्यी g \tfrac{100^g}{3} ५०g \tfrac{200^g}{3} १००g २००g ३००g ४००g

बहुतेकवेळा फेरी हे \tau बहुतेकवेळा वर्तुळ स्थिरांक 2\pi बरोबर वापरले जात असल्याने कोन फेरीमधून किंवा त्रिज्यीमधून मोजण्याने फार फरक पडत नाही.

त्रिज्यीमधून मोजण्याचे फायदे[संपादन]

काही सामान्य कोन त्रिज्यीमधून मोजून दाखविलेले आहेत. ह्यातले सगळे बहुभुज हे सामान्य बहुभुज आहेत.

कलनामध्ये आणि प्रायोगिक भूमितीपलीकडील बऱ्याच गणिती क्षेत्रात सर्वत्र कोन त्रिज्यीमध्ये मोजले जातात, कारण, त्रिज्यी मध्ये जो गणिती "नैसर्गिकपणा" असतो त्यामुळे बऱ्याच महत्त्वाच्या निष्पत्तींचे चांगल्या पद्धतीने सूत्रीकरण करता येते.

विशेषत: विश्लेषणातील त्रिकोणमितींची फलांची स्वचले त्रिज्यींमधून मांडली तर निष्पत्त्या सोप्या होतात उदाहरणादार्थ, त्रिज्यीचा वापराने मर्यादेचे सूत्र सोपे होते.

\lim_{h\rightarrow 0}\frac{\sin h}{h}=1,

हे सूत्र बऱ्याच नित्यसमीकरणांचा पाया आहे. उदा:-

\frac{d}{dx} \sin x = \cos x
\frac{d^2}{dx^2} \sin x = -\sin x.

ह्या आणि इतर वैशिष्ट्यांमुळे गणितातील उकले आणि गणिती समस्यांत येणार्‍री त्रिकोणमितीय फले भौमितिक अर्थांपुरती मर्यादित रहात नाहीत. (उदा. भैदिक समीकरणांतील उकले:-  \frac{d^2 y}{dx^2} = -y , सांधकाची उकल काढणे:-  \int \frac{dx}{1+x^2} , इ. इ.). बहुधा फलांची स्वचले नैसर्गिकपणे त्यांच्या रूपांनुसार आणि भौमितिक संदर्भानुसार, कोनांच्या त्रिज्यी मापनात लिहिलेली दिसतील.

त्रिज्यी वापरल्यावर त्रिकोणमिती फलांच्या श्रेणींचे सोपे आणि भव्य विस्तार करणे शक्य होते. उदा. पुढे ज्या xची (sin x) टेलर श्रेणी दाखविली आहे:

\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots .

जर x हा कोन अंशांमधून व्यक्त केला असता तर ह्या श्रेणीमध्ये π/१८०च्या घातांचे बरेच गोंधळात टाकणारे आकडे आले असते: जर x अंशामध्ये असेल, आणि त्रिज्यी संख्या y = πx /१८० असेल, तर

\sin x_\mathrm{deg} = \sin y_\mathrm{rad} = \frac{\pi}{180} x - \left (\frac{\pi}{180} \right )^3\ \frac{x^3}{3!} + \left (\frac{\pi}{180} \right )^5\ \frac{x^5}{5!} - \left (\frac{\pi}{180} \right )^7\ \frac{x^7}{7!} + \cdots .

गणिती दृष्टिकोनातून ज्या आणि कोज्या फलांतील संबंध आणि घातांकी फले (उदाहरणादाखल पाहा, ऑयलरचे सूत्र) ही.सुद्धा त्रिज्यीमधून मांडल्यावर सोपी वाटतात आणि इतर मापे वापरली तर बुचकळ्यात पाडतात.

मितीय विश्लेषण[संपादन]

त्रिज्यी जरी मापनाचे एकक असले तरी ते मितिहीन राशी आहे. हे व्याख्येवरून सहज लक्षात येऊ शकते. वर्तुळाच्या केंद्रापाशीचा कोन त्रिज्यीमध्ये मोजला, तर तो बंदिस्त कंसाची लांबी आणि वर्तुळाची त्रिज्या यांच्या गुणोत्तराएवढा असतो. ह्यामध्ये गुणोत्तरच्या दोन्ही राशी सारख्याच एककांमध्ये मोजली जाते. त्यामुळेच ह्या प्रक्रियेत एककाचे नाव घालवले जाते आणि गुणोत्तर मितिहीन बनते.

दुसर्‍या पद्धतीने सांगायचे तर, आपण आधी दाखविलेल्या ज्या x (sin x) ची टेलर श्रेणी विचारात घेऊ:

\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots .

जर x ला एकक असते तर ही बेरीज अर्थहीन ठरेल: घातहीन घटक x हे घातांकित घटक x^3/3! मध्ये मिळवले जाऊ शकत नाही (किंवा त्यांची वजाबाकी होऊ शकत नाही) इ. आणि म्हणूनच x हा मितिहीन असयलाच पाहिजे.

जरी ध्रुवीय निर्देशक आणि गोलीय निर्देशकांमध्ये त्रिज्यी निर्देशनासाठी अनुक्रमे द्विमिती आणि त्रिमितींमध्ये वापरली जात असली तरी शेवटी ते एकक त्रिज्या निर्देशनपासून साधित आहे, म्हणूनच कोनमापन हे मितिहीनच राहाते.

भौतिकीत वापर[संपादन]

भौतिकीत जेथे कोनीय मापनांची गरज असते तेथे मोठ्या प्रमाणावर त्रिज्यीचा उपयोग केला जातो. उदा. कोनीय वेग हे त्रिज्यी प्रतिसेकंद (rad/s) मोजले जाते. एक फेरी प्रति सेकंद म्हणजेच २π त्रिज्यी प्रतिसेकंद

त्या़चप्रमाणे, कोनीय त्वरण हे बहुधा त्रिज्यी प्रतिसेकंद प्रतिसेकंद (rad/s) मोजले जाते.

मितीय विश्लेषणासाठी हीच एकके s−1 आणि s−2 अशी वापरली जातात.

तेसेच, दोन तरंगांमधील प्रावस्थांतर(फेज-डिस्टन्स)) सुद्धा त्रिज्यीमध्ये मोजले जाते. उदा. जर दोन तरंगांचे प्रावस्थांतर जर (k·२π) त्रिज्यी असेल, आणि k हा जर पूर्णांक असेल तर ते प्रावस्थेत(समान-फेज) असल्याचे समजले जाते आणि जर प्रावस्थांतर (k·2π + π) असेल, आणि क हा जर पूर्णांक असेल तर ते प्रतिप्रावस्थेत(विरुद्ध-फेज) असल्याचे समजले जाते.

त्रिज्यीपासून बनलेली लहान एकके[संपादन]

त्रिज्यीला मिलि आणि मायक्रोसारखे मेट्रिक उपसर्ग गणितात अजिबात वापरले जात नाहीत, मात्र त्यांचा उपयोग बंदुकशास्त्रात मर्यादित प्रमाणात होतो.

मिलित्रिज्यीचे (0.001 rad) माप मिल म्हणूनही ओळखले जाते, त्याची अंदाजे किंमत लष्करी तोफा चालविण्यात आणि लक्ष्य उडविण्यासाठी वापरली जाते. \pi ची अंदाजे किंमत = ३.२ धरली तर एक पूर्ण फेरीमध्ये एकूण ६४०० मिल्स होतात. इतर बंदुका चालविण्याच्या पद्धतीत \piची वेगळी अंदाजे किंमत वापरली जाते

मिलित्रिज्यीवर आधारित किंमतीत १०००मीच्या पल्ल्यामागे १ मीटरचा फरक पडतो. (अश्या छोट्या कोनांत वक्रता नगण्य असते). लेसरच्या किरणांचे अपसरण मोजण्यासाठी मिलित्रिज्यीचा उपयोग होतो.

मायक्रोत्रिज्यी (मायक्रोरॅडियन) (μrads) आणि नॅनोत्रिज्यी (nrads) सारखी छोटी परिमाणे खगोलशास्त्रात वापरली जातात. परानिम्न अपसरणासाठीसुद्धा ह्याचा वापर केला जातो. मिलीपेक्षा लहान एकके अतिसूक्ष्म कोने मोजण्याच्या बाबतीत उपयोगी पडतात.

हे सुद्धा पाहा[संपादन]

संदर्भ[संपादन]

  1. Biography of Roger Cotes.
  2. History of Mathematical Notations. 
  3. (1910) "". Nature 83. 
  4. Earliest Known Uses of Some of the Words of Mathematics.

बाह्य दुवे[संपादन]

साचा:Wikibooks साचा:Wiktionarypar